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Model equations

∂ψ

∂t
= g(ψ),

ψ|t0 = Ψ0,

(1)

=⇒ Well-posed problem with unique deterministic solution.

ψ(x, t) is model state vector.



Model equations and measurements

∂ψ

∂t
= g(ψ),

ψ|t0 = Ψ0,

Mψ = d.

=⇒ Over-determined problem with no solution.

Example of direct measurement of ψ(t):

ψ(ti) = Miψ =

∫

δ(t− ti)ψ(t)dt.



Allow for errors

Assume stochastic errors q(x, t), a(x) and ε:

∂ψ

∂t
= g(ψ) + q,

ψ|t0 = Ψ0 + a,

Mψt = d+ ε.

=⇒ Infinitively many solutions.

Must specify statistics for error terms!

Least squares problem.

Find estimate for ψ which “minimizes” errors.



State estimation

“Find an estimate of the state given a dynami-

cal model and measurements.”

Standard data assimilation problem.

Minimize errors in model and measurements.

Solved by e.g. adjoint, representer or Kalman filter methods.



Simple example

Given the model

dψ

dt
= 1,

ψ(0) = 0,

ψ(1) = 2,

Overdetermined.

No solution.



Allowing for errors

Relax model and conditions

dψ

dt
= 1 + q,

ψ(0) = 0 + a,

ψ(1) = 2 + b.

Underdetermined.

Infinitively many solutions.



Statistical assumption

Statistical null hypothesis, H0:

q(t) = 0, q(t1)q(t2) = C0δ(t1 − t2), q(t)a = 0,

a = 0, a2 = C0, ab = 0,

b = 0, b2 = C0, q(t)b = 0.

Makes it possible to seek a solution which:

is close to the conditions,

almost satisfies the model,

by minimizing error terms.



Penalty function

Define penalty function

J [ψ] = W0

∫

1

0

(

dψ

dt
− 1

)2

dt +W0

(

ψ(0)− 0
)2

+W0

(

ψ(1)− 2
)2

with W0 = C−1

0
.

Then ψ is an extremum if

δJ [ψ] = J [ψ + δψ] − J [ψ] = O
(

δψ2
)

when δψ → 0.



Variation of penalty function

We have

J [ψ + δψ] = W0

∫

1

0

(

dψ

dt
− 1 +

dδψ

dt

)2

dt

+W0

(

ψ(0) − 0 + δψ(0)
)2

+W0

(

ψ(1) − 2 + δψ(1)
)2

and we must have

∫

1

0

dδψ

dt

(

dψ

dt
− 1

)

dt + δψ(0)
(

ψ(0) − 0
)

+ δψ(1)
(

ψ(1) − 2
)

= 0,

From integration by part we get

δψ

(

dψ

dt
− 1

)∣

∣

∣

∣

1

0

−

∫

1

0

δψ
d2ψ

dt2
dt+δψ(0)

(

ψ(0)−0
)

+δψ(1)
(

ψ(1)−2
)

= 0.



Minimium of penalty function

This gives the following system of equations

δψ(0)

(

−
dψ

dt
+ 1 + ψ

)∣

∣

∣

∣

t=0

= 0,

δψ(1)

(

dψ

dt
− 1 + ψ − 2

)∣

∣

∣

∣

t=1

= 0,

∫

1

0

δψ

(

d2ψ

dt2

)

dt = 0,

or since δψ is arbitrary....



Euler-Lagrange equation

The Euler–Lagrange equation

dψ

dt
− ψ = 1 for t = 0,

dψ

dt
+ ψ = 3 for t = 1,

d2ψ

dt2
= 0.

Elliptic boundary value problem in time.

It has a unique solution.

ψ = c1t+ c2,

with c1 = 4/3 and c2 = 1/3.



Results
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Summary

Additional data makes problem over determined

Allowing for errors gives variational inverse problem

Weigthed least squares solution

Solution almost satisfy dynamics and data
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