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[1] Future pathfinder missions such as NASA’s Hydrosphere State (Hydros) and ESA’s
Soil Moisture and Ocean Salinity (SMOS) will provide satellite-based global
observations of surface (0–5 cm) soil moisture. In previous work an ensemble Kalman
filter was used to estimate soil moisture, related states, and fluxes by merging noisy
low-frequency microwave observations with the forecasts from a conventional yet
uncertain land surface model. Kalman filter estimates are only conditioned on
observations prior to estimation times. Here it is argued that soil moisture estimation is a
reanalysis-type problem as observations beyond the estimation time are useful in the
estimation. An ensemble smoother is used in which the state vector and measurement
vector are distributed in time and updated as a batch. Its performance in a land data
assimilation context is compared to that of the ensemble Kalman filter. Results
demonstrate that smoothing yields an improved estimate compared to filtering, reflected
in the decreased deviation from truth and the reduction in uncertainty associated with the
estimate. Precipitation significantly impacts the performance of the smoother, acting as an
information barrier between dry-down events. An adaptive hybrid filter/smoother is
presented in which brightness temperature is used to break the study interval into a series of
dry-down events. The smoother is used on dry-down events, and the filter is used when
precipitation is evident between estimation times. An improved estimate is obtained as all
observations in a given dry-down period are used to estimate soil moisture in that period, and
backward propagation of information from subsequent precipitation events is avoided.

Citation: Dunne, S., and D. Entekhabi (2005), An ensemble-based reanalysis approach to land data assimilation, Water Resour. Res.,

41, W02013, doi:10.1029/2004WR003449.

1. Introduction

1.1. Soil Moisture in the Climate System

[2] Surface soil moisture is a key state variable which
integrates much of the land surface hydrology and exerts
considerable control on several land-atmosphere exchanges.
It is the fastest component of the continental water
cycle with a residence time of just a few days. Root zone
(5–100 cm) soil moisture determines how much water is
available to vegetation, thereby influencing the latent heat
flux and hence the surface energy balance.
[3] A consistent data set of soil moisture, ground tem-

perature and surface fluxes would enable a detailed study of
land-atmosphere interactions and the role that they play in
the climatic system. Global or regional in situ measurements
at the scales required to study hydrometeorology (10 km)
and hydroclimatology (30–50 km) would require networks
that are logistically and economically infeasible. Remote
sensing, on the other hand, is ideal for obtaining data at
these scales and globally.

1.2. Remote Sensing of Soil Moisture

[4] Passive microwave radiometry has long been recog-
nized as having the potential to measure soil moisture on

regional and global scales. Low-frequency passive micro-
wave radiation (1–3 GHz or L band) is particularly suitable
as there is a sharp contrast in the dielectric constants for
water and soil in this region of the spectrum [Ulaby et al.,
1986; Wang and Schmugge, 1980]. Furthermore, measure-
ments in this frequency range are relatively unaffected by
clouds and can penetrate light to moderate vegetation.
[5] As early as the late 1960s and early 1970s small

studies were undertaken to determine the feasibility of using
microwave brightness temperatures to estimate soil mois-
ture. L band remote sensing of soil moisture can be used to
estimate volumetric water content in the top 5 cm of the soil
column with a precision of a few percent [Jackson et al.,
1995; Jackson, 1997; Jackson et al., 1999]. Future path-
finder missions such as NASA’s Hydrosphere State
(Hydros) and ESA’s Soil Moisture and Ocean Salinity
(SMOS) will provide global L band observations from
which a global soil moisture data set can be obtained
[Entekhabi et al., 2004].

1.3. Land Data Assimilation

[6] While remote sensing offers the advantage of global
coverage, the temporal resolution of observations is limited
by the revisit time. The Hydros satellite will revisit a given
location on the Earth’s surface just once every 2–3 days.
Furthermore, the L band brightness temperature relates to
the soil moisture at the surface (top 5 cm) and yields no
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information on the root zone. Forcing a land surface model
with meteorological data can produce soil moisture and
temperature estimates, along with the associated fluxes at
the temporal resolution of the model yielding information
on the diurnal cycle. However, such unconstrained simu-
lations are subject to the errors in model structure and
forcing uncertainty. Data assimilation offers a means to
combine the advantages of modeling with those of remote
sensing.
[7] Data assimilation techniques have been used in me-

teorology and oceanography for decades. A comparison of
the various techniques is provided by Ghil and Manalotte-
Rizzoli [1991]. Courtier et al. [1993] compiled a list of
significant papers in the application of data assimilation
techniques to meteorology problems. Data assimilation
techniques can be roughly divided into two categories;
variational techniques and those derived from the classic
Kalman filter. Both methods have been applied to hydro-
logical research in recent years.
[8] The central concept in variational data assimilation is

the adjoint model. This is obtained by linearizing the
forward model along a trajectory producing the tangent-
linear model, and obtaining the adjoint. Thus variational
techniques require that the model be differentiable. Lorenc
[1986] describes various variational techniques which
have been applied in meteorology. Several applications in
oceanography and meteorology are discussed by Ghil and
Manalotte-Rizzoli [1991] and Wunsch [1996]. Variational
techniques have been successfully applied to hydrological
applications in recent years [Castelli et al., 1999; Boni et al.,
2001; Reichle, 2000; Reichle et al., 2001a, 2001b;Margulis,
2002]. 4DVAR, in which observations distributed in space
and time are used with knowledge of temporal evolution of
the state, is particularly suited to our problem as demon-
strated by Reichle [2000], but it requires development of the
adjoint. While automatic adjoint compilers are available
[Giering and Kaminski, 1998], they can prove difficult to
use with large and intricate numerical models, and typically
involve extensive tuning and sensitivity studies to validate
the adjoint model generated. A means is sought by which
temporally distributed observations may be used in a
smoothing approach like 4DVAR without resorting to a
simplified land surface model.
[9] The classic Kalman filter as discussed by Gelb [1974]

provides the optimal state estimate for linear systems. It is
therefore of little use in hydrological applications where the

physical model equations are often nonlinear and contain
thresholds. In the extended Kalman filter for nonlinear
systems [Gelb, 1974; Jazwinski, 1970], approximate expres-
sions are found for the propagation of the conditional mean
and its associated covariance matrix. The structure of the
propagation equations is similar to those of the classic
Kalman filter for a linear system, as they are linearized
about the conditional mean. The extended Kalman filter has
been successfully applied to the land data assimilation
problem [Entekhabi et al., 1994; Galantowicz et al., 1999;
Walker et al., 2001; Walker and Houser, 2001; Crosson et
al., 2002], but its use in this application would require
derivation of a tangent linear model to approximate the land
surface model, as well as techniques to treat the instabilities
which might arise from such an approximation. Ljung
[1979] performed a convergence analysis of the extended
Kalman filter and demonstrated the potential for divergence
or bias in estimates in nonlinear systems. Nakamura et al.
[1994] encountered such instability in their application of
the extended Kalman filter to soil moisture estimation.
[10] An alternative sequential estimation technique for

nonlinear problems was proposed by Evensen [1994]. In the
ensemble Kalman filter (EnKF) an ensemble of model states
is integrated forward in time using the nonlinear forward
model with replicates of system noise. At update times, the
error covariance is calculated from the ensemble. The
traditional update equation from the classical Kalman filter
is used, with the Kalman gain calculated from the error
covariances provided by the ensemble. The EnKF has been
successfully implemented by Evensen and Van Leeuwen
[1996], Houtekamer and Mitchell [1998], and Houtekamer
and Mitchell [2001] and has already been used to merge L
band observations with model output to estimate soil
moisture [Reichle et al., 2002; Margulis et al., 2002; Crow,
2003; Crow and Wood, 2003]. Research in ensemble
techniques has yielded innovative methods of improving
estimates and reducing the computational burden [Segers et
al., 2000; Heemink et al., 2001; Verlaan, 1998; Verlaan and
Heemink, 2001]. The advantages and disadvantages of the
EnKF are compared to those of variational techniques in
Table 1.
[11] In the past, soil moisture observations have typically

been gathered during field experiments such as the Southern
Great Plains Field Experiments (SGP97 and SGP99) and
Soil Moisture Experiments in 2002 (SMEX02) and 2003
(SMEX03). Smoothing is ideal for analyzing historic data or

Table 1. Advantages and Disadvantages of Ensemble-Based Filters Compared to Those of Variational

Techniques

Ensemble-Based Filters Variational Techniques

Advantages Any model can be used. Model does
not need to be differentiable.
Noise can be placed anywhere, for example,
on uncertain parameters and forcing.
Noise can be non-Gaussian and nonadditive.

Uses all data in a batch window
to estimate the state.

Disadvantages Estimates are conditioned
on past measurements only.

Model must be differentiable
to obtain tangent-linear model.
Process noise can only be
additive and Gaussian.
Changes to model require that
adjoint be obtained again.
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data which are not available in real time, as is the case with
data from field experiments or exploratory missions such as
Hydros and SMOS. Smoothing involves using all measure-
ments in an interval T = [0, T], to estimate the state of the
system at some time t where 0 � t � T, so that the state
estimate at a given time is determined by including infor-
mation from subsequent observations. It will be argued that
an ensemble-based smoothing (or batch estimation) ap-
proach is most suited to the soil moisture estimation
problem.
[12] Results from the EnKF experiment [Margulis et al.,

2002] suggest that the estimate could be improved through
the inclusion of subsequent observations. Precipitation
events divide the study interval into a series of dry-down
events. In estimating soil moisture at a given time, one is
estimating a single point value in a series. It is intuitive
that the manner in which that series evolves in the future
is related to the state at the estimation time. Future
observations provide information on the shape of this
series in the future and so contain useful information on
the current state. Correlation between the states and the
observations decreases with depth as the observations
relate to the surface conditions. Consequently the impact
of the observations is lessened with increasing depth. This
means that it takes longer to correct for spurious initial
conditions at depth than close to the surface. As the
impact of the observations eventually penetrates the
deeper layers, the latent heat flux estimate is seen to
approach the observed values. Difficulty in estimating the
root zone soil moisture results in poor initial estimates of
the latent heat flux [Margulis et al., 2002]. If including
subsequent observations can improve on the initial con-
ditions at depth, it would result in improved latent heat
flux estimates.
[13] In the following section an ensemble-based

smoother will be developed as an extension of the
conventional EnKF which, by including information on
how the state evolves beyond the estimation time, should
yield improved estimates of the soil moisture at the
surface and at depth.

2. Ensemble Smoother Algorithm

[14] Several ensemble smoothers exist in data assimila-
tion literature, for example, the ensemble smoother (ES)
of Van Leeuwen and Evensen [1996] and the ensemble
Kalman smoother (EnKS) of Evensen and Van Leeuwen
[2000]. They have been used in various applications such
as ocean forecasting [Brusdal et al., 2003; Van Leeuwen,
2001; Van Leeuwen and Evensen, 1996] and fish stock
assessment [Gronnevik and Evensen, 2001] and the ob-
jective of this paper is to determine their applicability to
soil moisture estimation. The simplest smoother is an
extension of ensemble Kalman filtering in which the state
and measurement vectors are distributed in time, and the
augmented state vector is updated using the traditional
ensemble Kalman filter equations. Its performance is
compared to the EnKF to determine if an improved
estimate of soil moisture can be obtained with ensemble
smoothing and to identify issues which may be significant
in the implementation of an ensemble smoother in a land
data assimilation framework.

2.1. Ensemble Kalman Filter Equations

[15] In the EnKF an ensemble of model states, y(t) is
integrated forward in time using the full nonlinear model,
A[�].

y tð Þ ¼ A y tð Þ;a; u tð Þ;w tð Þ; t; t½ �
y t0ð Þ ¼ y0 ð1Þ

The state at time t depends on the state at a previous time t,
the time invariant parameters a of the model, the forcing
applied to the model u(t) and system error w(t). Here y(t)
contains the soil moisture in six layers of the soil column
and A[�] is the NOAH land surface model (LSM) [Chen et
al., 1996]. Time-invariant parameters include descriptors of
the soil texture and vegetation cover. The model is
initialized with random initial conditions y0. The observa-
tions z are related to the state y through the measurement
operator M[�] and have additive Gaussian error w(t).

z ¼ M y tð Þ½ � þ w ð2Þ

Here the radiative transfer model (RTM) is the measurement
operator, relating the volumetric soil moisture values in y(t)
to the observed L band brightness temperature (section 3.2).
The EnKF is a sequential processor, updating the state
through (3) when observations become available. Each
ensemble member yj(	) is updated individually using the
Kalman gain, K, which is calculated from the ensemble
statistics in (4).

y j þð Þ ¼ y j 	ð Þ þ K zþ w j 	M y j 	ð Þ
� �� �

ð3Þ

K ¼ Cyz Czz þ Cnð Þ	1 ð4Þ

Cyz ¼
1

NR

~y 	ð Þ~zT ð5Þ

Czz ¼
1

NR

~z~zT ð6Þ

K weighs the relative uncertainty in the modeled estimate to
that associated with the observation. Cyz is the cross
covariance between the prior state and its transformed value
in observations space, Czz is the covariance of the
transformed prior states in observation space and Cn is the
known variance of the observations (here Cn = (3K)2 for L
band observations). In equations (5) and (6), ~ðÞ denotes the
perturbation matrix, NY is the number of states(6), NZ is the
number of observations (1) and NR is the number of
ensemble members (2000). For each ensemble member
random noise wj is added to the observation z to account for
the contribution of observation error to the posterior
covariance [Burgers et al., 1998]. In the soil moisture
estimation problem, the model is highly nonlinear, and
uncertainty in parameters and forcing can result in non-
Gaussian distributions of the states. By updating each
ensemble member individually, this algorithm is particularly
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advantageous as it does not force a Gaussian posterior
distribution. A thorough description of the ensemble
Kalman filter and its implementation is provided by
Evensen [2003].

2.2. Ensemble Moving Batch Smoother

[16] The EnKF described above has been used to estimate
soil moisture during SGP97 [Margulis et al., 2002]. The
smoothing algorithm used here is a simple extension of the

Figure 1. Conceptual diagram of ensemble moving batch smoother algorithm. An estimate of the state is
required at every time step, while observations are available at every fourth time step. The length of the
smoother window (CSW) in this example is three as the smoother window encompasses three observations.
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EnKF in which the states are distributed in time and updated
in a ‘‘batch’’. The number of observations included
determines the length of the observation vector, the state
vector and consequently the covariance matrices. Includ-
ing observations too far into the future would increase
the computational burden without adding any useful
information. Fortuitously, the memory in soil moisture
is limited by the occurrence of precipitation which
disrupts the dry-down and effectively reinitializes the
problem.
[17] In the conceptual diagram in Figure 1 the batch

contains three observations. The smoother window refers
to the interval between the first and last observation. The
forward model is run through to the end of the smoother
window to obtain the prior estimate of the state. An
augmented state vector Y contains the states of interest
(y) at all time steps of interest, which may include times at
which the state is not observed.

Y ¼ y1 y2 ::: y9½ �T ð7Þ

The augmented measurement vector Z contains all the
observations in the smoother window:

Z ¼ z1 z5 z9½ �T ð8Þ

The EnKF equations in the previous section are applied
to these augmented vectors to yield an updated estimate.
When the EnKF equations are implemented for a batch
of observations, the covariance matrices relate the state
at multiple times to all observations in the batch. The
Kalman Gain matrix reflects the relevance of future
observations to the current state. The smoother window
is moved along the study interval one observation at a
time, as including a new observation introduces new
information.
[18] Here observations will be available every 3 days,

while an estimate of soil moisture is desired four times
daily, based on the data assimilation product requirement of
the Hydros mission [Entekhabi et al., 2004]. The batch
includes just two observations, to demonstrate that the
inclusion of any information on the future state would yield
an improved estimate. Consequently, the state vector will
consist of the volumetric soil moisture in six layers at 12
time steps, and the measurement vector will contain two
brightness temperatures.
[19] Computational burden is a concern in employing

batch smoothing techniques and ensemble techniques. As
the length of the augmented vectors grow, larger memory
will be required to make estimates conditioned on all
measurements in the batch window. A concern is that
including spatial correlation would increase the computa-
tional burden indefinitely. However, estimation variables
can be a combination of model states. The standard Hydros
data product is 0–5 cm and 5–100 cm soil moisture, so the
dimension of the state vector can be significantly reduced
even though the land surface model may have more layers
for computational stability. There are computationally more
efficient ways of implementing the ensemble smoother
[Evensen, 2003]. In subsequent studies where the spatial
dimension is added to the problem, the ensemble smoother

for land data assimilation will take advantage of the
improved implementation.

3. Data Assimilation Framework

[20] Here the ensemble moving batch (EnMB) smoothing
algorithm was evaluated using data from the Southern Great
Plains Experiment 1997 (SGP97) to facilitate comparison
with results from Margulis et al. [2002]. Experiments
focused on two points in the SGP97 domain, namely, El
Reno and Little Washita.
[21] Data from the Oklahoma Mesonet were used to

create an Observing System Simulation Experiment
(OSSE). The land surface model (section 3.1) was forced
using meteorological data to create a synthetic truth. Syn-
thetic observations were generated from this ‘‘truth’’ using
the radiative transfer model (section 3.2). Additive zero-
mean Gaussian noise with standard deviation of 3K was
added to the synthetic observations to account for observa-
tion error. Using synthetic rather than real observations
offers the following advantages.
[22] 1. The estimation technique can be evaluated since

the synthetic truth is known. Furthermore, this obviates the
need to compare the estimate from data assimilation to
ground observationswhich are prone to added sampling error.
[23] 2. The availability of observations is not constrained

by adverse weather or instrument troubles.
[24] 3. Observations can be made at any time. Here they

were taken at 6am every 3 days to simulate the revisit time
of the Hydros mission.
[25] 4. Meteorological data from the Oklahoma Mesonet

was used to generate the truth from the land surface model,
so the experiment duration could be extended to run from
1st May to 1st September 1997.

3.1. Model

[26] The NOAH Land Surface Model is used to propagate
the ensemble of states forward between observations. This
1-D model of the soil column provides estimates of soil
moisture and temperature profiles in addition to the mass
and energy terms of the surface water and energy balances.
It is a widely used and freely available community land
surface model which has been extensively validated and is
currently used in the NASA land data assimilation system
[Lohmann et al., 2004]. It was used by Margulis et al.
[2002] to estimate soil moisture using the EnKF.

3.2. Radiative Transfer Model

[27] A Radiative Transfer Model (RTM) is required to
transform the states from state-space to observation space.
The RTM used here is identical to that used by Margulis et
al. [2002]. It is based on the retrieval algorithm used by
Jackson et al. [1999] to retrieve soil moisture from ESTAR
observations during SGP97 but using the mixing model of
Wang and Schmugge [1980]. Surface roughness and vege-
tation effects are also accounted for [Choudhury et al.,
1979; Jackson and Schmugge, 1991].

3.3. Model Error and Uncertainty

[28] Model error was implicitly added to the data assim-
ilation framework by allowing key parameters to assume
different values in an expected range for each ensemble
member. Uncertainty was imposed on four key soil and
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vegetation parameters, namely the saturated hydraulic
conductivity, the minimum canopy resistance, the porosity
and the wilting point. Varying the saturated hydraulic
conductivity effectively varies the rate at which water can
move through the soil column. Allowing the porosity and
wilting point to vary means that each replicate has a distinct
possible range of soil moisture values. Each replicate
having a different minimum canopy resistance means that
the rate of evaporation will be different for each ensemble
member.
[29] The values for these parameters afforded by the

model based on land class or soil class were used as
nominal values. The time-invariant parameter value for
each ensemble member consists of the nominal value
multiplied by a random variable of mean one and a
coefficient of variation of 1.0 for both the saturated hydrau-
lic conductivity and minimum canopy resistance, and 0.05
for the porosity and wilting point. Lognormal multiplicative
Gaussian noise was added to yield a large range of values
while ensuring that negative values did not occur. The
relative frequency distributions of the parameters for the
El Reno pixel are shown in Figure 2.
[30] Uncertainty was also included in the initial condi-

tion. Nominal relative saturation at the surface was set to
0.5, with the nominal values at depth determined by
assuming a hydrostatic profile. Uncertainty was including

by adding Gaussian noise of mean 0.0 and standard devi-
ation decaying exponentially with depth from 0.2 at the
surface.
[31] Unpublished experiments found that the most effec-

tive way to introduce ensemble spread is through uncer-
tainty in precipitation. Further discussion of uncertainty in
precipitation is included in sections 4 and 5.

3.4. Algorithm Evaluation

[32] The ensemble open loop (EnOL) provides the model
estimate and associated model error in the absence of data
assimilation, a valuable benchmark by which to measure the
improvement after filtering or smoothing. To evaluate
ensemble algorithms, the quantities of interest are the
ensemble mean, which will be compared to the ‘‘true’’
state, and the standard deviation across the ensemble. Two
summary statistics will also be used to assess the smoother
algorithms performance relative to the EnKF and EnOL.
[33] 1. The root-mean-square error (RMSE) provides an

average measure of the deviation of the ensemble mean
from the true state over all estimation times. Clearly, the
data assimilation algorithm is performing well if the en-
semble mean is close to the truth.
[34] 2. The estimation error standard deviation (EESD) is

the average standard deviation across the ensemble calcu-
lated over all estimation times. The ensemble spread is a

Figure 2. (top left) Relative frequency distribution of saturated hydraulic conductivity, (top right)
minimum stomatal resistance, (bottom left) porosity, and (bottom right) wilting point at the El Reno pixel.
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measure of the confidence which should be placed in the
estimate.
[35] Observations were available every 3 days, and esti-

mates were required four times daily at 6am, 2pm, 6pm and
12am. For the four month experiment duration, this yielded
a sample of 493 estimation times with which to calculate the
RMSE and EESD.

4. Experiment 1: Precipitation Forcing Derived
From Monthly Total Information

[36] In a global land data assimilation application, pre-
cipitation data will likely be derived from satellite data such
as Global Precipitation Climatology Project (GPCP). Daily,
pentad and monthly total precipitation products are avail-
able from GPCP. Daily totals provide higher-frequency
information than pentad or monthly observations but due
to temporal sampling and algorithm uncertainty the monthly
total is more reliable. This temporal resolution is too coarse
to characterize storm events for the purposes of land surface
modeling which requires hourly data or better. The spatial
resolution of observations (2.5� 
 2.5�) is orders of mag-
nitude greater than that of the estimation pixel (typically
kilometers), so information on spatial variability of precip-
itation is lost. Use of such data requires spatial and temporal
disaggregation to the resolution of the model. Consequently,

use of satellite-based data implies uncertainty in the timing,
amount, and spatial distribution of precipitation.

4.1. Ensemble Precipitation Using the Rectangular
Pulses Model to Disaggregate the Monthly Total

[37] The objective is to generate an ensemble of precip-
itation forcing which is constrained only by the monthly
total precipitation. Using the rectangular pulses model
(RPM) of Rodriguez-Iturbe et al. [1984], it is assumed for
each ensemble member that precipitation occurs as distinct
rectangular pulses with random parameters. The expected
arrival time, duration and intensity of a storm are exponen-
tially distributed with mean values E[tB], E[tr] and E[ir]
respectively.
[38] Using historical meteorological data, Hawk and

Eagleson [1992] derived these climatological parameters
for many stations across the United States. The Hawk and
Eagleson parameters for the months of interest are shown in
Table 2. The method of Margulis and Entekhabi [2001] is
used here to derive a modified E[tB], E[tB]

0 which takes into
account the observed monthly precipitation. The total
monthly precipitation was derived from Oklahoma Mesonet
precipitation records at El Reno. Using these ‘‘monthly
observations,’’ E[tB]

0 was calculated for the four months of
interest in 1997 (Table 2). Further value can be derived
from the monthly measured rainfall, by using it to discrim-
inate between realizations. Here realizations were rejected if
they were beyond 25% of the total observed precipitation at
the end of the four month period.

4.2. Surface Soil Moisture at El Reno

[39] Figure 3 compares the estimated surface soil mois-
ture from the EnOL, EnKF, and EnMB to the truth. In the
absence of information on the timing and magnitude of

Table 2. Rectangular Pulses Model Parameters for Oklahoma City

Month E[tr] E[ir] E[tB] E[tB]
0

May 7 2.616 83 91
June 5 3.220 92 60
July 8 2.264 137 130
August 4 2.374 116 62

Figure 3. Ensemble mean volumetric soil moisture (q) in the top 5 cm of the soil column at El Reno
compared to the synthetic truth. Results are shown for the period between Julian days 180 and 218.
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precipitation events, the EnOL soil moisture is distributed
across the dynamic range. Both the EnKF and EnMB are
drawn toward to the truth at observation times. While the
EnKF drifts uncorrected toward the EnOL between obser-

vations, the backward propagation of subsequent observa-
tions yields a smooth transition between observations in the
EnMB. This is particularly advantageous during dry-down
periods (e.g., Julian days 205 to 219).

Figure 4. Estimation error standard deviation (EESD) in the estimate of surface (0–5 cm) volumetric
soil moisture (q) at El Reno for the period between Julian days 180 and 218.

Figure 5. Average normalized EESD in surface volumetric soil moisture as a function of timing within
the interobservation period at El Reno.
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[40] The relative timing of observations and precipitation
significantly impacts the performance of the smoother.
Backward propagation of the increased soil moisture fol-
lowing a storm results in spuriously moist estimates in the
EnMB. The effect is most detrimental if the observation
immediately precedes an observation (days 196–199), and
less harmful if the precipitation is early in the interval (days
184–187 and 202–205). As smoothing is most effective on
dry-down curves, it would be useful if we could identify
dry-down curves over which to smooth. This issue is
discussed further in section 6.
[41] Figure 4 shows the reduced EESD obtained from the

EnMB compared to the EnKF and EnOL. The EESD in
the EnOL is relatively constant at 0.09, about 25% of the
dynamic range of soil moisture. In the filter case, the

ensemble spread exhibits a characteristic sawtooth shape,
growing rapidly between observations. The symmetry in the
EnMB standard deviation indicates that the backward prop-
agation of information through the covariance matrix is
improving the estimate. The reduced standard deviation
indicates that we should have increased confidence in the
smoothed result compared to the filter.
[42] Figure 5 shows the reduction in ensemble spread

after filtering/smoothing as a function of timing within the
3-day interobservation period. At each estimation time the
EESD for the smoother and filter were normalized by that
of the open loop. The results were then averaged for each
point in the interobservation period. The EESD in the
ensemble filter grew to 0.7 times that of the open loop
case as observations were available every 3 days. Short-

Figure 6. Deviation from ‘‘true’’ soil moisture at El Reno is shown at various depths. The smoothed
estimate (EnMB) is compared to the filtered estimate (EnKF) and the ensemble open loop (EnOL).
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ening/lengthening the observation interval would reduce/
increase this value. The maximum ratio in EESD between
the smoother and the open loop is around 0.45, two thirds
of the maximum from the filter. The greatest improvement
due to smoothing is immediately prior to the later obser-

vation. The correlation between states and the future
observation is highest immediately prior to the observation
and is diminished as the difference between the estimation
time and the future observation increases. This is counter-
balanced by the fact that EESD is at a minimum at the

Figure 7. Normalized RMSE and average normalized EESD of volumetric soil moisture at depth (q) at
El Reno.

Figure 8. Observed precipitation (in mm h	1) time series for El Reno and Ninnekah (Little Washita).
This illustrates the difference in the timing and quantity of precipitation at the two stations.
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observation time and grows with time. The combination of
the two effects is a symmetric rather than sawtooth
evolution of the EESD between observations in the
smoothed case.

4.3. Subsurface Soil Moisture Estimation at El Reno

[43] Figure 6 shows the deviation between the estimated
and true soil moisture at depth. With increasing depth the
length of time required by the EnOL to recover from

Figure 9. Ensemble mean volumetric soil moisture (q) in the top 5 cm of the soil column at El Reno
compared to the synthetic truth. Results are shown for the period between Julian days 219 and 243.

Figure 10. Estimation error standard deviation in the estimate of surface (0–5 cm) volumetric soil
moisture (q) at El Reno. Results are shown for the period between Julian days 219 and 243.
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spurious initial conditions increases. While the EnKF
improves on the open loop, the EnMB reduces the
deviation by over 50% as soon as the first observations
become available. In the deepest layer, the EnKF takes
20–30 days to catch up with the smoother.

4.4. Summary Statistics at El Reno

[44] Figure 7 demonstrates that smoothing improves
over filtering at all depths in terms of both RMSE and
EESD. The filtered estimate is quickly drawn toward the
EnOL between observations, limiting the reduction in
RMSE to 25% at the surface. The smoother leads to a
further 20% improvement over the filter. At depth,
smoothing alleviates the impact of initial conditions much
faster than the filter. In layers 4 and 5 (20–45 cm and

45–100 cm, respectively), the RMSE is close to half that
of the filter.
[45] There is almost a 50% reduction in average EESD

due to the filter compared to the EnOL. There is a further
33% reduction at the surface when the EnMB is employed.
Although ensemble growth is slower at depth due to the
dampened response to incident precipitation, there is a
persistent reduction in EESD due to smoothing.

5. Experiment 2: Precipitation Forcing From
Rain Gauge Data

5.1. Derivation of Precipitation Forcing Data

[46] The objective of this experiment is to evaluate the
performance of the EnMB in a data assimilation framework

Figure 11. Deviation from ‘‘true’’ soil moisture at El Reno shown for layers 2–5. The results from the
moving batch smoother (EnMB) are compared to that of the EnKF and the ensemble open loop (EnOL).

12 of 18

W02013 DUNNE AND ENTEKHABI: ENSEMBLE-BASED REANALYSIS APPROACH W02013



where precipitation data are from rain gauges. While gauge
data are a useful indicator of when precipitation occurs, the
amount is uncertain as the measurement is at a point and is
prone to errors due to spatial variability and underreach. An
ensemble of precipitation forcing was generated to reflect
this uncertainty. Nominal precipitation was multiplied by a
lognormally distributed random factor of mean 1.0 and
standard deviation set equal to 50% of the nominal precip-
itation. The performance of the EnMB was evaluated at two
locations.
[47] 1. At El Reno (the gauge location) the timing of

precipitation is known. A single realization of the precipi-
tation forcing was used to generate ‘‘truth.’’
[48] 2. At Little Washita it was assumed that the best

available data is that recorded at El Reno. Gauge density in
the SGP97 region is considerably higher than the rest of the
world. This experiment evaluates the performance of the
EnMB under the incorrect assumption that storm timing is
perfectly known. Figure 8 shows that the amount and timing
of precipitation are considerably different at Little Washita
and El Reno.

5.2. Estimating Surface Soil Moisture at El Reno With
Precipitation Forcing From Gauge Data at El Reno

[49] Figure 9 compares the true soil moisture to that
estimated using the EnOL, EnKF, and EnMB. The benefit
of smoothing is particularly noticeable between Julian days
226 and 229. Elsewhere, the improvement over filtering
is relatively modest. This may be due to the limited
growth of uncertainty in this experiment due to the
assumption that the timing of precipitation is perfectly
known. The growth of uncertainty between observations

is limited to the uncertainty associated with the unknown
parameters.
[50] From Figure 10 the reduction in standard deviation

due to smoothing exceeds that achieved by filtering. The
uncertainty introduced in this experiment is very small;
the standard deviation across the filtered ensemble is on
the order of 0.02, about 5% of the dynamic range of
volumetric soil moisture. The limited improvement due to
data assimilation between days 219 and 225 suggests that
the uncertainty in the modeled estimate is comparable with
the observation error.

5.3. Estimating Soil Moisture at Depth at El Reno
Using El Reno Forcing Data

[51] Figure 11 shows the deviation between the true soil
moisture at depth and the the estimate from the ensemble
algorithms. Spurious dry initial conditions persist longer at
depth, as illustrated by the EnOL estimate in layers 4 and 5.
In the filter and smoother, the states at depth are updated
through their correlation with the surface state and the
observations. The filter improves more slowly than the
smoother as it processes the observations sequentially.
The smoother updates using observations in a batch, therby
tying the estimate closer to the truth between observations.

5.4. Estimating Surface Soil Moisture at Little Washita
With Precipitation Forcing From Gauge Data at El Reno

[52] Figure 12 shows the estimated surface soil moisture
at Little Washita. The EnMB improves over the EnKF and
EnOL, but is unable to correct entirely for the fact that
storms occurred at El Reno while Little Washita was dry.
When precipitation occurs at El Reno all ensemble members

Figure 12. Ensemble mean volumetric soil moisture q in the top 5 cm of the soil column at Little
Washita is compared to the synthetic truth for the interval from Julian day 179 to 219.
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receive precipitation, thereby reducing ensemble spread.
Because of this apparent certainty that the soil at Little
Washita is wet, the filter and smoother fail to update the
ensemble mean toward the true value. This demonstrates the
importance of correctly characterizing the sources of error
and uncertainty in land data assimilation.

5.5. Summary Statistics at El Reno and Little Washita

[53] From Figure 13, filtering yields about a 50%
reduction in RMSE compared to the EnOL at the surface.
Ensemble smoothing yields a further 20% reduction on
average. At depth, the greater improvement in smoothing
over filtering is largely due to smoothing’s ability to
correct for erroneous initial conditions. With longer
experiments, this effect would be reduced. The EnKF
yields a 50% reduction in EESD over the EnOL, but the
EnMB yields a further 20% improvement over the
sequential filter. The improvement is apparent at both
El Reno and Little Washita.

6. Hybrid Filter//Smoother Approach

[54] Recall from section 4 that while the EnMB yielded
improved results compared to filtering, the backward prop-
agation of information pertaining to the soil’s response to

subsequent precipitation led to spuriously moist estimates.
From Figure 3 it is evident that smoothing is most advan-
tageous where the objective is to measure a particular dry-
down series. Conversely, the smoother is least beneficial
when the smoothing interval is disrupted by intermittent
precipitation.
[55] Here a method is proposed to objectively divide the

study interval into a series of dry-down events over which
to smooth. It would be undesirable to use precipitation data
for this purpose, as the objective is to estimate soil moisture
with uncertain precipitation data and satellite data only.
Fortuitously, the L band brightness temperature observa-
tions can be used to make a first-order assessment of when
in the study interval wetting has occurred.
[56] Figure 14 shows the precipitation recorded at El

Reno over the 4-month-long synthetic experiment (top).
The resultant modeled soil moisture at the surface at El
Reno is shown in the middle panel. L band brightness
temperature TB observations were simulated from this soil
moisture using the Radiative Transfer Model (bottom). TB is
a function of soil moisture, soil temperature, and many soil
and vegetation parameters. In general, however, a decrease
in TB indicates the interim occurrence of precipitation so
smoothing would offer no improvement over filtering.
Because the observations have an error of 3K (1s),

Figure 13. Normalized RMSE and average normalized EESD in the smoothed estimate of volumetric
soil moisture q compared to that of the filter and open loop.
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decreases of less than 6K are disregarded. Provided the
brightness temperature is increasing the soil is drying down,
and smoothing should improve over filtering.
[57] Instead of prescribing the fixed length of a moving

smoother window, in this approach the length of the smoother
window is dynamic such that the augmented state vector
consists of all estimation times on a given dry-down curve.
Soil moisture estimation using this technique should yield
improved estimates through two mechanisms: (1) Preventing
backward propagation of information from a subsequent dry-
down and (2) lengthening the smoother window to encom-
pass all observations on the dry-down curve of interest

guarantees that the state is estimated using all relevant
observations.

6.1. Results

[58] In Figure 15 the ‘‘hybrid smoother/filter’’ perfor-
mance is compared to that of the EnKF and the EnMB. The
key benefit of this hybrid algorithm is seen, for example, on
the dry-down beginning on day 205. As the brightness
temperatures are increasing for 12 days, the smoother
window encompasses five observations. Using all of these
observations in a single batch to estimate soil moisture at all
estimation times in that interval yields an improvement over

Figure 14. (top) Incident precipitation (in mm h	1) at El Reno. (middle) Resultant modeled
volumetric soil moisture q at El Reno. (bottom) Simulated brightness temperatures TB associated with
these soil moisture values. The solid lines indicated smoothing intervals which are separated by
filtered intervals.
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Figure 16. Estimation error standard deviation in the estimate of surface (0–5 cm) volumetric soil
moisture at El Reno. The EESD from the hybrid smoother/filter approach is compared to that obtained
using the EnKF and EnMB alone. Results are shown for the period between Julian days 180 and 218.

Figure 15. Ensemble mean volumetric soil moisture q in the top 5 cm of the soil column at El Reno
compared to the synthetic truth for the period between Julian days 180 and 218.
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using the EnMB (LSW = 2). The hybrid algorithm also
improves the estimate during wetting periods where the
filter is used instead of the EnMB. Precipitation occurs
immediately prior to the observation on day 199. The
EnMB propagates information on the wet condition back
in time yielding a moister estimate between days 196 and
199. In the hybrid algorithm the filter is used in this interval,
preserving the drier soil moisture condition.
[59] There are cases where the hybrid algorithm can result

in a poorer estimate than the EnMB (days 184–187 and
202–205). Here the precipitation occurs just after an ob-
servation filtering underestimates the soil moisture, and the
hybrid is therefore too dry in this interval. When the
precipitation occurs halfway between observations (Julian
days 190–193), the hybrid algorithm has no net effect.
These results demonstrate the difficulties of estimating soil
moisture in intermittent precipitation using temporally
sparse observations.
[60] The impact of using the hybrid algorithm is also

apparent in the reduction in ensemble standard deviation
(Figure 16) compared to the EnKF and the EnMB alone.
When there is intermittent precipitation, the algorithm
switches constantly between filtering and smoothing. When
the hybrid selects the filter, ensemble spread grows like that
in the filter, unconstrained by subsequent observations.
Similarly, when the smoother is used for an interval of
length 2 (i.e., two observations), the standard deviation
across the ensemble is comparable to that of the EnMB.
However, when the hybrid recognizes a lengthy dry-down
and estimates the soil moisture over the entire interval as a
long batch, the impact of additional future observations
reduces the ensemble standard deviation below that of the
moving batch smoother. The issue of the relative timing of
precipitation and observations merits further attention.
Nonetheless, this approach makes tentative steps to address
the apparent pitfalls in using ensemble smoothing tech-
niques in soil moisture estimation.

7. Conclusion and Discussion

[61] It is argued soil moisture estimation is a reanalysis-
type problem rather than a control-type or forecast problem
and consequently a smoothing approach is more appropriate
than filtering. An ensemble-based smoothing algorithm was
presented in which all observations within a prescribed
window are used in a batch estimator to determine soil
moisture at the surface and at depth. The algorithm was
compared to the ensemble Kalman filter in two experiments
with different precipitation data, and smoothing improved
the estimated soil moisture at the surface and at depth.
Smoothing was particularly effective in correcting for
erroneous initial conditions at depth. This improvement is
significant as it may lead to improved surface flux estima-
tion through the dependence of the latent heat flux on root
zone soil moisture. The smoother incorporates more obser-
vations than the filter to obtain the estimate, and thus is
characterized by significantly reduced estimation errors and
increased confidence in the estimate.
[62] The use of smoothing in land data assimilation is

complicated by the occurrence of precipitation. A hybrid
smoother/filter approach was presented to address this by
breaking the study interval into a series of smoothing
windows. The smoother window length is dynamic rather

than prescribed, including all observations in a single dry-
down period. The soil moisture for the whole dry-down is
determined in one batch. This method improves the estimate
by preventing the backward propagation of information
from precipitation events after an observation at the end
of a smoothing window. Here the hybrid assumes precipi-
tation has occurred if the decrease in brightness temperature
is greater than 2s, i.e., twice the standard deviation in the
observation. While this is simplistic, it demonstrates
the feasibility of using brightness temperature to break the
interval into dry-down events. Further experiments will
address the issue of spatial variability in brightness temper-
ature. The impact of the relative timing of precipitation and
observations merits further attention as the performance of
the hybrid depends on when in the interobservation period
the precipitation occurred.
[63] So far, the performance of the smoother has been

evaluated on independent uncorrelated pixels. In future
work, the smoother will be used to estimate soil moisture
over a grid of spatially correlated pixels to estimate soil
moisture from combined active and passive (multiscale)
microwave-based observations like those expected from
Hydros.
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