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ABSTRACT

It is formally proved that the general smoother for nonlinear dynamics can be formulated as a sequential
method, that is, observations can be assimilated sequentially during a forward integration. The general filter can
be derived from the smoother and it is shown that the general smoother and filter solutions at the final time
become identical, as is expected from linear theory. Then, a new smoother algorithm based on ensemble statistics
is presented and examined in an example with the Lorenz equations. The new smoother can be computed as a
sequential algorithm using only forward-in-time model integrations. It bears a strong resemblance with the
ensemble Kalman filter. The difference is that every time a new dataset is available during the forward integration,
an analysis is computed for all previous times up to this time. Thus, the first guess for the smoother is the
ensemble Kalman filter solution, and the smoother estimate provides an improvement of this, as one would
expect a smoother to do. The method is demonstrated in this paper in an intercomparison with the ensemble
Kalman filter and the ensemble smoother introduced by van Leeuwen and Evensen, and it is shown to be superior
in an application with the Lorenz equations. Finally, a discussion is given regarding the properties of the analysis
schemes when strongly non-Gaussian distributions are used. It is shown that in these cases more sophisticated
analysis schemes based on Bayesian statistics must be used.

1. Introduction

The celebrated Lorenz model (Lorenz 1963) has been
the subject of extensive studies motivated by its chaotic
and strongly nonlinear nature. In the field of data assim-
ilation the model has served as a test bed for examining
the properties of various data assimilation methods when
used with strongly nonlinear dynamics; see for example,
Gauthier (1992), Miller et al. (1994), Evensen and Fario
(1997), and in particular Evensen (1997), which gives a
more detailed discussion of the ensemble Kalman filter
(EnKF) with the Lorenz model in the same setup as will
be used here. The results from these studies have been
used to suggest properties and possibilities of the methods
for applications with oceanic and atmospheric models that
may also be strongly nonlinear and chaotic.

A weak constraint ensemble smoother (ES) method was
recently proposed by van Leeuwen and Evensen (1996).
The method applies ensemble integrations to represent the
density for the model evolution in space and time and a
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variance minimizing estimate can then be calculated. For
linear dynamics it would, in the limit of an infinite en-
semble size, converge to the generalized inverse solution
of the weak constraint problem (which is solved for by
the representer method or the traditional Kalman smooth-
er). The method was tested with a quasigeostropic model
where it proved to perform poorer than the EnKF. In Ev-
ensen (1997), the ES was used with the Lorenz equations
and the results were intercompared with those from the
ensemble Kalman filter and a weak constraint gradient
descent method. It turned out that it performed rather poor-
ly for this example compared to the EnKF.

In this paper the ensemble smoother problem for the
Lorenz equations is revisited, using a new formulation
of the smoother algorithm that performs better than both
the original ES and the EnKF. It may be considered as
an extension of the EnKF where information at assim-
ilation times is propagated backward in time.

In the two following sections, the general formu-
lation of the data assimilation problem and the methods
used to solve it are discussed. An application of three
data assimilation methods, that is, the EnKF, ES, and
EnKS, is discussed in section 4. In section 5 the con-
sequences of neglecting non-Gaussian effects are il-
lustrated in a simple example. Finally, a discussion is
given in section 6.
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2. Data assimilation in a probabilistic framework

In van Leeuwen and Evensen (1996) the general data
assimilation problem was introduced using a Bayesian
formalism. Note first that the unknown model state, con-
tained in c, is viewed as a realization of a random
variable that can be described by a probability density
f (c). Note that the vector function c is fairly general
and can contain a number of continuous functions of
space and time, for example, the various velocities and
thermodynamic variables in a general circulation model.
The observations are contained in a vector, d, and are
also treated as random variables with a distribution,
f (d | c), which would normally be assumed to be Gauss-
ian. Using the definition of a conditional probability
density we can derive the probability density of a model
state c given a vector of observations as

f (d | c) f (c)
f (c | d) 5 , (1)

(· · ·) dcE
where the denominator is just the integrated numerator
that normalizes the expression so the integral of f (c | d)
becomes one. Thus, the probability density of the data
given a model evolution, f (d | c), and the probability
density of the model evolution, f (c), must be known.
The value of c that maximizes f (c | d) is the maximum
likelihood (MLH) estimate for c.

If one assumes that the model equations describe a
first-order autoregressive, or Markov, process, that is,
the model is forced randomly as

dc 5 g(c) dt 1 db, (2)

where g is the nonlinear model operator and db contain
random increments with known covariance Q and zero
mean, the probability density, f(c), for the model solution,
can be determined by solving Kolmogorov’s equation:

n n 2Q] f (c) ]g (c) f (c) ] f (c)iji1 5 . (3)O O
]t ]c 2 ]c ]ci51 i, j51i i j

A derivation of this equation, which is the fundamental
equation for evolution of error statistics, can be found in
Jazwinski (1970). The probability density function rep-
resents the density of an infinite ensemble of possible
model states, each having an associated infinitesimal prob-
ability. The width of the probability density function cor-
responds to the variance of the ensemble and represents
the errors in the predicted solution. Given the density at
an initial time, f(c) can be computed by solving Eq. (3).

a. The sequential smoother

It will now be shown that the general smoother in Eq.
(1) can be formulated as a sequential method. Assume first
that the observations contained in d are available at a
number of different times tk. For each time tk, there is now
an observation vector, dk, containing a subset of d. Sim-
ilarly, the model state c(x, t) is now divided into a number
of subsets ck(x, t) 5 c(x, t ∈ (tk21, tk]). There is an ex-
ception for c0, which is the initial condition at time t0.

The general smoother defined by Eq. (1) can now,
for the time interval t ∈ [t0, tk], be written as

f (c , c , . . . , c | d , . . . , d )0 1 k 1 k

f (c , c , . . . , c ) f (d , . . . , d | c , c , . . . , c )0 1 k 1 k 0 1 k5 ,

(· · ·) dcE
(4)

where the only assumption is that measurements are
distributed among a finite number of time instants.

Write now the joint probability function, f (c0, c1,
. . . , ck), as

f (c , c , . . . , c )0 1 k

5 f (c ) f (c |c ) f (c |c , c ) · · · f (c |c , . . . , c )0 1 0 2 0 1 k 0 k21

5 f (c ) f (c | c ) f (c | c ) · · · f (c | c ),0 1 0 2 1 k k21 (5)

where it has been assumed that the model evolution is
a first-order Markov process; that is,

f (ck | c0, . . . , ck21) 5 f (ck | ck21). (6)

Thus the model state ck can be determined when knowing
ck21, independently of the prior evolution of the state.

The distribution for the data can be written as

f (d , . . . , d | c , . . . , c )1 k 0 k

5 f (d | c , . . . , c ) · · · f (d | c , . . . , c )1 0 k k 0 k

5 f [d | c(t )] f [d | c(t )] · · · f [d | c(t )]. (7)1 1 2 2 k k

Here, we assume that (i) the data collected at different
times are independent, that is,

f (d1, d2 | c) 5 f (d1 | c) f (d2 | c), (8)

and (ii) the data at a particular time depend only on the
state at this time, that is,

f (dk | c0, . . . , ck) 5 f [dk | c(tk)]. (9)

With some rearrangement, the smoother defined by Eq.
(4) can be written as

f (c ) f (c | c ) f [d | c(t )] f (c | c ) f [d | c(t )] · · · f (c | c ) f [d | c(t )]0 1 0 1 1 2 1 2 2 k k21 k kf (c , . . . , c | d , . . . , d ) 5 . (10)0 k 1 k

(· · ·) dcE
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The interesting observation is that this expression can be evaluated sequentially and forward in time. Starting
with the distribution for the initial conditions, f (c0), we can compute the smoother using the following equations
sequentially, one by one:

f (c ) f (c | c ) f [d | c(t )]0 1 0 1 1f (c , c | d ) 5 , (11)0 1 1

(· · ·) dcE
f (c , c | d ) f (c | c ) f [d | c(t )]0 1 1 2 1 2 2f (c , c , c | d , d ) 5 , (12)0 1 2 1 2

(· · ·) dcE
_

f (c , . . . , c | d , . . . , d ) f (c | c ) f [d | c(t )]0 k21 1 k21 k k21 k kf (c , . . . , c | d , . . . , d ) 5 . (13)0 k 1 k

(· · ·) dcE

Thus, Eq. (11) defines the smoother solution over the
interval t ∈ [t0, t1] using data vector d1. Equation (12)
defines the smoother solution over the interval t ∈
[t0, t2] introducing data vector d2. The information from
data vector d1 is also used through the density,
f (c0, c1 | d1), from (11). The information from data
vector dk influences the solution over the entire time
interval t ∈ [t0, tk]; thus, it is a true smoother. The
assumptions used in deriving (11)–(13) are summarized
as follows:

1) The model evolution is a first-order Markov process.
(This assumption is not needed but has been adopted
since the expressions becomes cleaner and the mod-
els normally used are describing a Markov process
through the forward integration.)

2) The data are distributed over a finite number of dis-
crete times.

3) The data vectors at different times are independent.

These conditions will normally always be satisfied and
do not pose any serious restrictions. When satisfied, the
sequential smoother should give exactly the same so-
lution as the general smoother defined by Eq. (1).

b. The general filter

It is now interesting to derive the equations for the
general filter in the same probabilistic formalism. In the
filter there will be no information carried backward in
time. Thus, the following notation is used: c(tk) is now
the model state at time tk, and ck is c in the interval t
∈ (tk21, tk], as used for the sequential smoother.

The estimate at the ‘‘final’’ time tk is now defined by
integrating the sequential smoother (13) over all c in
the interval t ∈ [t0, tk). Temporarily omitting the nor-
malization, the derivation of the filter equations is as
follows:

f [c(t ) | d , . . . , d ]k 1 k

5 f (c , . . . , c | d , . . . , d ) dc9E 0 k 1 k

c9[t∈(t ,t )]0 k

5 f (c , . . . , c | d , . . . , d )E 0 k21 1 k21

c9[t∈(t ,t )]0 k

3 f (c | c ) dc9 f [d | c(t )]k k21 k k

5 f (c , . . . , c | d , . . . , d ) dc9E 0 k 1 k21

c9[t∈(t ,t )]0 k

3 f [d | c(t )]k k

5 f [c(t ) | d , . . . , d ] f [d | c(t )].k 1 k21 k k (14)

Thus, the general filter can be written as

f [c(t )] f [d | c(t )]1 1 1f [c(t ) | d ] 5 , (15)1 1

(· · ·) dcE
f [c(t ) | d ] f [d | c(t )]2 1 2 2f [c(t ) | d , d ] 5 , (16)2 1 2

(· · ·) dcE
_

f [c(t ) |d , . . . , d ] f [d |c(t )]k 1 k21 k kf [c(t ) |d , . . . , d ] 5 .k 1 k

(· · ·) dcE
(17)

Here the information is carried only forward in time
and the state at time tk is dependent on all the previous
data, d1, . . . , dk. Note also that the estimate at the final
time will be identical for the smoother and the filter, as
one would expect. At all previous times it will be sub-
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optimal since future observations have not been used
to define the estimate.

c. A ‘‘lagged’’ smoother

It is also possible to define a lagged smoother (see,
e.g., Cohn et al. 1994). This is an approach that is nor-
mally used for reducing the CPU requirements and it is
based on the assumption that the observations at time
tk will only influence the estimate in an interval t ∈
[tk 2 tlag, tk]. In practical applications tlag would typi-
cally be a few times the predictability time. It can be
formally derived from the sequential smoother Eq. (13)
by integration over c{t ∈ [t0, tk 2 tlag)}, using the same
approach as when deriving the general filter equations.

3. Practical implementation

The formulations in the previous section are of course
very complicated to solve when using general density
functions and high-dimensional state spaces. On the oth-
er hand, if one can assume that they are all Gaussian,
which would be the case with linear dynamics, it is
possible to solve for the optimal variance minimizing
estimate. Note that the variance minimizing estimate
will be identical to the MLH estimate as long as the
dynamics are linear and the observation errors can be
described by a Gaussian. Thus, under this assumption,
the methods presented below gives the optimal solution
of the general smoother and filter problems. For the
computation of all of the analyses below, see Burgers
et al. (1998) for the practical implementation and in
particular the required perturbation of measurements.

a. Ensemble smoother

The ensemble smoother presented in van Leeuwen
and Evensen (1996) attempted to find the c that min-
imized the posterior error variance. Optimally this
should have been done by first computing f (c | d) from
(1) and then finding the mean, or even better the MLH
estimate. A more practical approach was chosen based
on the following algorithm:

1) The distribution for the initial conditions f (c0) was
defined as Gaussian.

2) Kolmogorov’s equation, (3), was solved for f (c0, c)
5 f (c | c0) f (c0), using a Markov chain Monte Car-
lo method, or ensemble integration, as described in
Evensen (1994b), which provides a representation of
the distribution for the model evolution without any
observations used.

3) The prior error covariances in space and time,
Cc c(x, t, x9, t9), for the prediction or first guess, were
computed from the ensemble representation of
f (c0, c).

4) The first guess solution, (x, t), was defined to befcES

the ensemble mean.

5) The distribution for the observations was assumed
to be Gaussian and described by an error covariance
matrix, w21.

6) The analysis, (x, t), could then be computed fromacES

M

a fc (x, t) 5 c (x, t) 1 b r (x, t). (18)OES ES m m
m51

An explanation of notation is now provided. The model
state, c(x, t), can be recognized as an object, or a vector,
containing all the model variables over the spatial and
temporal domain that is defined for the smoother. Sim-
ilarly, each of the M representers or influence functions,
rm(x, t), are of the same type. There is one representer
for each of the M measurements and they define the
influence the measurement will have on all the model
variables at all locations in space and time. The rep-
resenters are defined as

rm(x, t) 5 Lm,[x9,t9][Ccc(x, t, x9, t9)]. (19)

The vector of coefficients b can be found by solving
the system

(R 1 w21)b 5 d 2 L[x9,t9][cES(x9, t9)]. (20)

The mth column in the representer matrix, R(:, m) 5
L[x,t][rm(x, t)], can be constructed by measuring the mth
representer.

A component, m, of the linear measurement operator
would for a direct measurement of the mth component
be written

TL [c] 5 d(x 2 x9)d(t 2 t9)d c(x9, t9) dx dtm,[x9,t9] E E m m c

D T

T5 d c(x , t ),c m m (21)

where D and T define the spatial and temporal domains
of the smoother problem. The two first d functions de-
fine the spatial and temporal locations of the measure-
ment and the vector defines which variable in c isTdc

measured. The subscript [x9, t9] means it operates on x9
and t9.

This is the traditional variance minimizing analysis,
which becomes the MLH estimator when only Gaussian
statistics are involved. If the model is nonlinear, the
distribution for the model evolution will not be Gauss-
ian, and this estimator is no longer the MLH estimator.

The interesting result from van Leeuwen and Evensen
(1996) and Evensen (1997) was that this smoother was
outperformed by EnKF, in particular in the example with
the highly nonlinear Lorenz equations used by Evensen
(1997). Note that the Gaussian assumption is valid for
linear dynamics and the ES estimate will then be iden-
tical to the traditional Kalman smoother or generalized
inverse estimate.

b. Ensemble Kalman filter

The ensemble Kalman filter, which is a sequential
method, was proposed by Evensen (1994a,b) and used
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in a realistic application by Evensen and van Leeuwen
(1996). See also the discussion in Burgers et al. (1998).
The EnKF applies a similar approach to the ES for
computing the analysis. Actually, it is based on the for-
mulation (15)–(17) where one computes the error co-
variance Ccc(x, x9, tk) for the prediction at time tk from
an ensemble representation of the density f [c(tk) | d1,
. . . , dk21]. Then, with a Gaussian assumption on the
distribution for the observations, the following equa-
tions define the analysis in the EnKF:

Mk

a fc (x, t ) 5 c (x, t ) 1 b r (x, t ), (22)OEnKF k EnKF k m m k
m51

where the first guess, (x, tk) at the time tk, is justfcEnKF

the mean of the ensemble prediction at tk. The vector
of coefficients, b, is found as the solution of the system

(Rk 1 )b 5 dk 2 Lk,[x][ (x, tk)],21 fw ck EnKF (23)

where the Mk representers corresponding to the Mk data
at time tk are given as

rm(x, tk) 5 Lk,m,[x9][Ccc(x, x9, tk)], (24)

and the representer matrix becomes R k (:, m) 5
Lk,[x][rm(x, tk)].

The subscript k on Lk,[x] denotes that this is the mea-
surement operator for the measurements dk, at time tk,
while [x] means that it operates on x. For a direct mea-
surement the mth component at time tk would be

TL [c] 5 d(x 2 x9)d c(x9, t ) dxk,m,[x9] E m c k

D

T5 d c(x , t ). (25)c m k

Thus, as for the ES it is assumed that all the statistics
are Gaussian. This would be valid for linear dynamics
and then the EnKF estimate would equal the Kalman
filter estimate.

c. Ensemble Kalman smoother

It will now be illustrated how a variance minimizing
analysis similar to the one used in the EnKF and the
ES can be used to solve the sequential smoother for-
mulation from (11)–(13). The approach is very similar
to the EnKF since it is sequential in time. The only
extension is that we now compute the error covariance
Ccc(x, t , x9, tk), t ∈ [t0, tk] from the prediction

f (c , . . . , c | d , . . . , d )0 k 1 k21

f (c , . . . , c | d , . . . , d ) f (c | c )0 k21 1 k21 k k215 . (26)

(· · ·) dcE
The analysis then operates on the previous estimate for
t ∈ [t0, tk] through the equation

Mk

a fc (x, t) 5 c (x, t) 1 b r (x, t), (27)OEnKS EnKS m k,m
m51

where the subscripts k, m denote that this is the mth
representer for a dataset at time tk. The vector of co-
efficients, b, are solutions of the system

(Rk 1 )b 5 dk 2 Lk,[x,t ][ (x, t)].21 fw ck EnKS (28)

Note that the b found in (28) for the ensemble Kalman
smoother (EnKS) at t 5 tk will be identical to the one
found in the EnKF at time t 5 tk. The representers can
now be written as

rk,m(x, t) 5 Lk,m,[x9,t9][Ccc(x, t , x9, t9)], (29)

and the representer matrix is identical to the one used
in the EnKF, where the columns are constructed from
Rk(:, m) 5 Lk,[x,t ][rk,m(x, t)]. For a direct measurement
the mth component of the measurement functional
would be written as

TL [c] 5 d(x 2 x9)d(t 2 t9)d c(x9, t9) dxk,m,[x9,t9] E E m k c

D T

T5 d c(x , t ).c m k (30)

Thus, even if the analysis has been computed sequen-
tially in time for each observation vector, dk, the esti-
mate at times t # tk contains information from all data
up to and including tk. Thus, it is a true smoother. A
few remarks should be made.

R The smoother is entirely sequential. There will be no
backward integrations of any model equations.

R The similarity with the EnKF is obvious. At the final
time the solution is the EnKF solution.

R The first guess solution for t ∈ [tk21, tk] is the EnKF
solution, contrary to the climatology in the ES meth-
od.

R The vectors of coefficients b are identical for the
EnKF and the EnKS.

R The method is consistent with prior assumptions and
provides posterior error estimates.

R The matrix Rk 1 w21, which needs to be inverted,
will have dimension Mk rather than M as in the ES.

R For linear dynamics, the ES and EnKS should give
identical solutions.

4. An example

The example from Evensen (1997) will be used to
illustrate the new EnKS, and also to intercompare it with
the EnKF and ES. Thus, we adapt the Lorenz equations
with exactly the same setup as was used in Evensen
(1997).

a. Model equations

The Lorenz model consists of a system of three cou-
pled and nonlinear ordinary differential equations (Lo-
renz 1963):
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dx dy
5 g(y 2 x), 5 rx 2 y 2 xz,

dt dt

dz
5 xy 2 bz. (31)

dt

Here x(t), y(t), and z(t) are the dependent variables, and
we have chosen the following commonly used values
for the parameters in the equations: g 5 10, r 5 28,
and b 5 8/3.

b. Description of experiments

For all the cases to be discussed the initial conditions
for the reference case are given by (x0, y0, z0) 5
(1.508 870, 21.531 271, 25.460 91) and the time in-
terval is t ∈ [0, 40]. The observations and initial con-
ditions are simulated by adding normal distributed noise
with zero mean and variance equal to 2.0 to the reference
solution. The variables x, y, and z are measured. The
initial conditions used are also assumed to have the same
variance as the observations. These are the same values
as were used in Miller et al. (1994) and Evensen (1997).

The model error covariance is defined to be diagonal
with variances equal to 2.00, 12.13, and 12.31 for the
three equations in (31), respectively. These numbers de-
fine the error variance growth expected over one unit
time in the model, and they correspond to the numbers
used in Evensen (1997). The reference case is generated
by integrating the model equations including the sto-
chastic forcing corresponding to the specified model er-
ror variances. The stochastic forcing is included through
a term like Dt s 2db, where s 2 is the model errorÏ Ï
variance and db is drawn from the distribution N(0, 1).

In the calculation of the ensemble statistics an en-
semble of 1000 members was used. This is a fairly large
ensemble but it was chosen so as to prevent the pos-
sibility of drawing erroneous conclusions due to the use
of too small an ensemble. The same simulation was
rerun with various ensemble sizes and the differences
between the results were minor; for example, using 500
members gave essentially the same result as the 1000-
member case.

c. Assimilation experiment

The three methods discussed above will now be ex-
amined and compared in an experiment where the dis-
tance between the measurements is Dtobs 5 0.5, which
is similar to experiment B in Evensen (1997).

In the upper plots in Figs. 1–8, the full line denotes
the estimate and the dash–dot line is the reference so-
lution. In the lower plots the full line is the estimated
standard deviation (from ensemble statistics), while the
dash–dot line is the true residuals with respect to the
reference solution.

1) ENSEMBLE SMOOTHER SOLUTION

The ensemble smoother solution for the x and z com-
ponents and their estimated error variance are given in
Figs. 1 and 2, respectively. The dotted lines located close
to x 5 0 and z 5 24, in Figs. 1 and 2, respectively, are
the first guesses used by the ES computed as the mean
of all the members in the ensemble.

It was found that the ES performed rather poorly with
the current data density. Note, however, that even if the
fit to the reference trajectory is rather poor, it captures
most of the transitions. The main problem is related to
the estimate of the amplitudes in the reference solution.
The problems for the ES are linked to the appearance
of non-Gaussian contributions in the distribution for the
model evolution, which can be expected in such a
strongly nonlinear case.

Remember that the smoother solution consists of a
first guess estimate (mean of the freely evolving ensem-
ble) plus a linear combination of time-dependent influ-
ence functions or representers, which are calculated
from the ensemble statistics. Thus, the method becomes
equivalent to a variance minimizing objective analysis
method where the time dimension is included.

In the ensemble smoother the posterior error vari-
ances can easily be calculated by performing an analysis
for each of the ensemble members and then evaluating
the variance of the new ensemble. Clearly, the error
estimates are not large enough at the peaks where the
smoother performs poorly. This is again a result of ne-
glecting the non-Gaussian contribution from the prob-
ability distribution for the model evolution. Thus, the
method assumes the distribution is Gaussian and be-
lieves it is doing well. Otherwise the error estimate looks
reasonable with minima at the measurement locations
and maxima in between the measurements. Note again
that if a linear model is used the posterior density will
be Gaussian and the ensemble smoother will, in the limit
of an infinite ensemble size, provide the same solution
as would be found using the Kalman smoother or the
representer method (Bennett 1992).

2) ENSEMBLE KALMAN FILTER SOLUTION

The ensemble Kalman filter does a reasonably good
job at tracking the reference solution with the lower
data density, as can be seen in Figs. 3 and 4. One tran-
sition is missed in this case at t 5 18, and there are also
a few other locations where the EnKF has problems, for
example, t 5 1, 5, 9, 10, 13, 17, 19, 23, 26, and 34.
The error variance estimate is also rather consistent,
showing large peaks at the locations where the estimate
obviously has problems tracking the reference solution.
Note also the similarity between the absolute value of
the residual between the reference solution and the es-
timate, and the estimated standard deviation. To all
peaks in the residual there is a corresponding peak for
the error variance estimate.
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FIG. 1. Ensemble smoother: (top) The inverse estimate (full line) and reference solution (dash–
dot line) for x. (bottom) The corresponding estimated standard deviations (full line) and the
absolute value of the difference between the reference solution and the estimate, i.e., the real
posterior errors (dash–dot line). For this particular plot we also show the first guess used by the
ES as the dotted line located close to x 5 0.

The error estimates show the same behavior as was
found by Miller et al. (1994) with very strong error
growth when the model solution is passing through the
unstable regions of the state space, and otherwise rather
weak error variance growth in the more stable regions.
Note for example the low error variance when t ∈
[28, 34] corresponding to the oscillation of the solution
around one of the attractors.

A somewhat surprising result is that the ensemble
Kalman filter seems to perform better than the ensemble
smoother. This is at least surprising based on linear the-
ory, where one has learned that the Kalman smoother
solution at the end of the time interval is identical to
the Kalman filter solution, and the additional informa-
tion introduced by propagating the contribution of future
measurements backward in time further reduces the er-

ror variance compared to the filter solution. Note again
that if the model dynamics are linear, the ensemble Kal-
man filter will give the same solution as the Kalman
filter, and the ensemble smoother will give the same
result as the Kalman smoother.

3) ENSEMBLE KALMAN SMOOTHER SOLUTION

In Figs. 5 and 6 the solutions obtained by the EnKS
are shown. Clearly, the estimate is an improvement upon
the EnKF estimate. The solution is smoother in time
and seems to provide a better fit to the reference tra-
jectory. Looking in particular at the problematic loca-
tions in the EnKF solution, these are all recovered in
the smoother estimate. Note, for example, the additional
transitions in t 5 1, 5, 13, and 34, in the EnKF solution
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FIG. 2. Ensemble smoother: Same as in Fig. 1 but for the z component. Also here the first
guess for the ES is shown as a dotted line close to z 5 24.

that have now been eliminated in the smoother. The
missed transition at t 5 17 has also been recovered in
the smoother solution.

The error estimates are also reduced all through the
model domain. In particular the large peaks in the EnKF
solution are now significantly reduced. As for the EnKF
solution there are corresponding peaks in the error es-
timates for all the peaks in the residuals, which proves
that the EnKS error estimate is consistent with the true
errors.

This is a very promising result. In fact the EnKS
solution with Dtobs 5 0.5 seems to do as well or better
than the EnKF solution with Dtobs 5 0.25 (see experi-
ment A in Evensen 1997).

In Figs. 7 and 8 the results for the lagged smoother
are shown. A time lag of five time units was used and
the results are almost indistinguishable from the full
smoother solution. Thus a significant saving of CPU

and storage should be possible for more realistic ap-
plications when using the lagged smoother.

5. The effect of non-Gaussian statistics

As has been pointed out the analysis schemes used
here can be characterized as variance minimizing. Thus,
even if the ensemble certainly is non-Gaussian due to
the forward integration of nonlinear model equations,
only the Gaussian part of the distribution is used. This
is in contrast to the work by Miller et al. (1999) where
the maximum-likelihood analysis is calculated by ac-
tually constructing the density function for the model
evolution and then calculating the conditional density
in terms of analytical functions. They found that this
made a significant improvement on the analysis. How-
ever, it is still not clear how this approach can be used
in a practical way for high-dimensional state spaces.
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FIG. 3. Ensemble Kalman filter: See explanation in Fig. 1.

It is of interest to examine the properties of the anal-
ysis scheme in the ES, EnKF, and EnKS when the dis-
tribution of the predicted ensemble is strongly non-
Gaussian. Assume now that the forecast distribution is
given by the steady-state double-well distribution dis-
cussed by Miller et al. (1994). Essentially it describes
a state located with equal probability in two potential
wells, one located around x 5 21 and the other around
x 5 1.

The double-well distribution is given as

2.0
f (x) 5 A exp 2 h(x) , (32)f 2[ ]s

where s 2 is the variance of the stochastic forcing in the
double-well model (Miller et al. 1994) and A is a nor-
malization coefficient. The function h(x) is defined as

h(x) 5 x2(x2 2 2). (33)

The distribution f f (x) will now be used as a first guess
distribution when examining the analysis schemes. Fur-
ther, it is assumed that the distribution for a single ob-
servation is Gaussian

2(x 2 d)
f (d | x) 5 A exp 2 , (34)o 2[ ]so

where d is the observation and is the variance of the2s o

observation error. The distribution for x given the datum
d now becomes

f(x | d) 5 Afo(d | x)ff (x) 5 A exp[2g(x)], (35)

where the function g(x) is

22 4 1 2d d
4 2g(x) 5 x 2 2 x 2 x 1 . (36)

2 2 2 2 21 2s s s s so o o

The MLH estimate is given by the maximum value of
f (x | d), which can be found from
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FIG. 4. Ensemble Kalman filter: See explanation in Fig. 2.

]f(x | d) ]g(x)
5 2exp[2g(x)] 5 0 or (37)

]x ]x

]g(x) 8 4 1 2d
35 x 2 2 2 x 2 5 0. (38)

2 2 2 21 2]x s s s so o

The mean of the posterior distribution is an alternative
estimator and is given as

`

x 5 xf(x | d) dx, (39)E
2`

and it is also the variance minimizing estimate from the
posterior distribution.

The procedure used for computing the analysis in the
previous sections is vastly different. There it is assumed
that the first guess distribution and the distribution for
the observation are both Gaussian. Thus, they are both
represented by their respective (co)variances and a stan-

dard variance minimizing analysis is then calculated. In
our simple example that would be equivalent to first
calculating the mean of f f (x),

`

x 5 xf (x) dx, (40)f E f

2`

which in this case is equal to zero, and the variance
`

2 2x 5 x f (x) dx. (41)f E f

2`

For the observations, the mean, d, and the variance,
, from f o(d | x) are used.2s o

Then the variance minimizing analysis is calculated
from

2xf
x̂ 5 0 1 (d 2 0), (42)

2 2x 1 sf o
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FIG. 5. Ensemble Kalman smoother: See explanation in Fig. 1.

with x̂ representing the ES, EnKF, and EnKS estimate.
This is different from the estimate found using (39)
where the full non-Gaussianities of the prior distribu-
tions are taken into account when creating the posterior
distribution.

In Fig. 9 an example is given where the double-
well distribution indicates that the most likely value
for the prediction is either 21 or 1. This is certainly
a highly non-Gaussian distribution, which has a mean
equal to zero. The observation has the value 0.5, and
is relatively inaccurate as can be seen from the wide
distribution function. The posterior distribution in-
dicates a large probability for the estimate to be lo-
cated somewhere in the well centered at x 5 1. The
MLH estimate found from (38) and the mean of the
posterior distribution defined by (39) are very similar.
The mean is shifted slightly toward zero, which is
mainly a contribution from the minor probability that
the state would actually be located in the well at x 5

21. The EnKF-type analysis completely misses the
probable solutions and ends up in a very unlikely state
that hardly ever occurs. A more accurate observation
is shown in Fig. 10 just to illustrate the stronger con-
tribution from the observation on the posterior dis-
tribution, and the still very poor estimate from the
EnKF analysis scheme. From this example it is clear
that the EnKF does not give the optimal solution if a
non-Gaussian distribution is involved.

In van Leeuwen and Evensen (1996) it was pointed
out that the mean of the posterior distribution and the
posterior variance could easily be calculated in the case
where the first guess distribution is represented by an
ensemble, using a frequency interpretation. The estimate
could then be given as

N N

E [c] 5 c f (d | c ) f (d | c ) , (43)O Oi i i@[ ] [ ]i51 i51

and the variance becomes
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FIG. 6. Ensemble Kalman smoother: See explanation in Fig. 2.

N

2(c 2 E [c]) f (d | c )O i i
i512E [(c 2 E [c]) ] 5 , (44)N

f (d | c )O i
i51

Thus, the estimate is a weighted average of all the
ensemble members, where the weights are determined
by the distance between the members and the data.
That is, ensemble members that are close to the data
are weighted higher than those in less agreement with
the data. However, one also needs an efficient method
for creating the new ensemble representing the pos-
terior distribution. One of the strengths of the schemes
used in this paper is that the posterior ensemble au-
tomatically comes out of the analysis (Burgers et al.
1998).

6. Discussion

A new formulation for an ensemble-based smoother,
which can be used in a sequential approach, has been
presented. The method, which is named the ensemble
Kalman smoother, has been tested with the Lorenz equa-
tions and intercompared with results from the ensemble
Kalman filter by Evensen (1994b) and the ensemble
smoother presented by van Leeuwen and Evensen
(1996). The new formulation turned out to provide a
significant improvement over the EnKF and the ES so-
lutions. It can be considered as an extension of the EnKF
since the EnKF solution is used as the first guess for
the analysis, which is propagated backward in time by
using the ensemble covariances. This is done in a se-
quential approach every time new measurements are
available. Thus, the method can be characterized as a
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FIG. 7. Lagged ensemble Kalman smoother: See explanation in Fig. 1.

sequential smoother. No backward integrations in time
and no adjoint operators are needed.

It was also shown that the EnKS is identical to the
ES for linear dynamics. The main advantage for the
EnKS when used with nonlinear dynamics is that it
relies on the EnKF prediction as the first guess estimate
for each analysis. This is clearly an advantage consid-
ering that the EnKF also outperformed the ES in Ev-
ensen (1997).

The ES provides a variance-minimizing estimate by
rejecting the non-Gaussian part of the density of the
pure model evolution. That is, it uses the model cli-
matology as the first guess and computes the time- and
space-dependent influence functions for each measure-
ment. The problem is that the climatology becomes very
bad as a first guess for nonlinear and unstable dynamics.
The error variance of the climatology (ensemble mean)
will be very large and much accurate data will be needed
to pull the estimate toward an accurate representation

of the reference solution or true state. Further, in a sys-
tem like the Lorenz equations we can also expect that
the distribution for the model evolution becomes strong-
ly non-Gaussian (see e.g. Miller et al. 1999), and thus
the variance minimizing estimate becomes very inac-
curate.

The EnKF has proven to do a good job in tracking
the reference solution for the Lorenz equations. When
using the EnKF solution as a first guess, the EnKS is
capable of providing a significant improvement over the
EnKF estimate. The EnKS estimate eliminates the dis-
continuities or steps normally obtained with all sequen-
tial data assimilation methods. Thus, if the objective is
to compute a climatology over a certain time period,
the smoother solution is certainly preferable. On the
other hand, in a forecasting mode there is no point in
using the smoother since the EnKF and the EnKS will
give the same estimate at the latest time, which would
be used as an initial condition for the forecast.
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FIG. 8. Lagged ensemble Kalman smoother: See explanation in Fig. 2.

The CPU requirements for the new EnKS are similar
to those needed for the EnKF. In practical applications
one could imagine that the analysis is to be computed
at discrete times during a simulation, say every 6 h,
which would be typical for an atmospheric model ap-
plication. To compute the analysis one would need to
store the full ensemble at these time instants. Then the
representers or influence functions for the observation
at the data time and each of the previous analysis times
are computed and the estimate is updated.

The storage requirements may become huge for long
time intervals with many analysis times. Fortunately, it
is possible to use a lagged version of the EnKS, which
is based on an assumption about the covariances in time.
If one can assume that the time correlation in the en-
semble statistics approaches zero over a certain time
interval, for example, a few times the predictability

time, the lagged smoother can be used to obtain a sig-
nificant saving of CPU time.

It should be noted that the EnKS is not the only
smoother method that benefits from the sequential for-
mulation presented here. There should also be room for
a simplification when using the representer method
(Bennett 1992) in some applications. The most obvious
approach would be to perform the analysis in the same
way as is done in the EnKS, except that the influence
functions for all prior times are computed by integra-
tions of the adjoint model rather than using the ensemble
statistics directly. This would lead to an implementation
of the representer method where measurements are pro-
cessed sequentially in time. For practical implementa-
tions a lagged version may also be used, thus making
the representer methods more suitable for operational
forecasting systems. The similarity between a sequential
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FIG. 9. The dotted line is the double-well distributon defining the first guess, the dash–dot line
is the distribution for a measurement, and the solid line is the posterior distribution. The diamond
is the MLH estimate, the plus is the mean of the posterior distribution, and the square is the
estimate as would be computed from the schemes used in the previous examples.

FIG. 10. Same as Fig. 9 but with a more accurate observation.

representer method and the EnKS also allows for a joint
implementation where, for example, the representer ma-
trix at time tk could be obtained from ensemble predic-
tions. One can then solve for the coefficients b corre-

sponding to the data at time tk, and the analysis at pre-
vious times could be computed by one backward inte-
gration of the adjoint model followed by a forward
integration of the model itself.
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There is also an apparent similarity between the EnKS
and an augmented Kalman filter. As was pointed out by
an anonymous reviewer, the lagged EnKS can be con-
sidered as an EnKF with an augmented model state
consisting of the present state vector along with the past
state vectors back to the predefined fixed lag. Thus, the
notion of a sequential smoother is not so strange after
all.

The use of a variance minimizing estimator for non-
Gaussian statistics was also discussed. There is clearly
room for improvement of the analysis scheme currently
used to take into account properly the non-Gaussian
contributions. The maximum-likelihood estimate is nor-
mally recognized as the optimal estimate, but it becomes
extremely complicated to find it for high-dimensional
systems (see Miller et al. 1999). An alternative might
be to elaborate further on the direct ensemble method
proposed by van Leeuwen and Evensen (1996).

A final remark should be made. The posterior distri-
butions from the examples shown in Figs. 9 and 10 are
nearly Gaussian, even if the priors are strongly non-
Gaussian. This could indicate that the assimilation of
measurements have a regularization effect and may re-
sult in more Gaussian-shaped distributions. One could
speculate that this is also one reason why the EnKF
performs better than the ES. If the time interval between
measurements is small, all the members will stay at the
same attractor and the estimate is then represented by
a nearly Gaussian distribution. Further, this argument
could also support the use of the formulas (43) and (44)
for computing the analysis and then creating a new
Gaussian ensemble by sampling a multivariate Gaussian
distribution with the mean and (co)variance defined by
these formulas. However, it would be preferrable if an
ensemble that correctly represents the posterior distri-
bution could be computed.

This discussion illustrates how complicated the data
assimilation problem becomes when strongly nonlinear
dynamics are involved. There are several solution meth-
ods for the inverse problem that for nonlinear models
result in different solutions. It can be formally shown

that all these methods give identically the same solution
when used with linear dynamics.
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