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Abstract The purpose of this paper is to examine how
different sampling strategies and implementations of the
analysis scheme influence the quality of the results in the
EnKF. It is shown that by selecting the initial ensemble,
the model noise and the measurement perturbations wi-
sely, it is possible to achieve a significant improvement in
the EnKF results, using the same number of members in
the ensemble. The results are also compared with a square
root implementation of the EnKF analysis scheme where
the analyzed ensemble is computed without the pertur-
bation of measurements. It is shown that the measure-
ment perturbations introduce sampling errors which can
be reduced using improved sampling schemes in the
standard EnKF or fully eliminated when the square root
analysis algorithm is used. Further, a new computation-
ally efficient square root algorithm is proposed which
allows for the use of a low-rank representation of the
measurement error covariance matrix. It is shown that
this algorithm in fact solves the full problem at a low cost
without introducing any new approximations.

Keywords Data assimilation � Ensemble Kalman Filter

1 Introduction

The Ensemble Kalman Filter (EnKF), in its native for-
mulation as originally introduced by Evensen (1994) and
Burgers et al. (1998), used pure Monte Carlo sampling
when generating the initial ensemble, the model noise
and the measurement perturbations. This has been a
useful approach since it has made it very easy to inter-
pret and understand the method (see Evensen, 2003).

Further, sampling errors can be reduced by an increase
of the ensemble size.

Based on the works by Pham (2001) and Nerger
(2004) it should be possible to introduce some
improvements in the EnKF, by using a more clever
sampling for the initial ensemble, the model noise and
the measurement perturbations. Further, the works by
Anderson (2001), Whitaker and Hamill (2002), Bishop
et al. (2001), and see also the review by Tippett et al.
(2003), have developed implementations of the analysis
scheme where the perturbation of measurements is
avoided.

This paper proposes a sampling scheme for the ini-
tial ensemble, the measurement perturbations and the
model noise, which effectively produces results similar
to the sampling used in the SEIK filter by Pham (2001).
The scheme does not add significantly to the compu-
tational cost of the EnKF, and leads to a very signifi-
cant improvement in the results. A further
improvement can be obtained if the sampling errors
introduced by the perturbation of measurements could
be removed. Thus, a consistent analysis algorithm,
which works without perturbation of measurements, is
derived and examined in combination with the im-
proved sampling schemes.

This paper has adopted the same notation as was
used in Evensen (2003), and this together with the tra-
ditional EnKF analysis scheme is briefly reviewed in the
following section. In Section 3 we derive a square root
analysis algorithm which computes the analysis without
the use of measurement perturbations. Then, in Sec-
tion 4 we discuss the improved sampling scheme for the
EnKF and a simple analysis of the expected impact of
improved sampling is presented in Section 5. Several
examples which quantify the impact of the improved
sampling and the use of square root algorithms are
presented in Section 6.

Then in the further discussion, the paper is concerned
with the use of low-rank approximatons for the mea-
surement error covariance matrix and efficient imple-
mentations of the square root analysis scheme. A

Ocean Dynamics (2004) 54: 539–560
DOI 10.1007/s10236-004-0099-2

Responsible Editor: J}org-Olaf Wolff

G. Evensen
Hydro Research Centre, Bergen, Norway,
and Nansen Environmental and Remote Sensing Center,
Bergen, Norway
e-mail: Geir.Evensen@hydro.com



standard pseudo-inverse is discussed in Section 7.1,
while in Section 7.2 we present an analysis of the po-
tential loss of rank that may occur in the case when
random measurement perturbations are used to repre-
sent the measurement error covariance matrix, as re-
cently discussed by Kepert (2004). It is proved that this
loss of rank is easily avoided by a proper sampling of
measurement perturbations. Section 7.3 presents a sta-
ble algorithm for computing the pseudo-inverse required
in the analysis scheme. This forms the basis for the
derivation of a very efficient implementation of the
square root algorithm in Section 7.4, where the inverse
of a matrix of dimension equal to the number of mea-
surements is eliminated. The present algorithm avoids
the approximate factorization introduced in Evensen
(2003) and solves the full problem. Results from the new
algorithm and a variant of it is then presented in Sec-
tion 8, where we examine the impact of assimilating a
large number of measurements together with the use of a
low-rank representation for the measurement error
covariance matrix.

2 The EnKF

The EnKF is now briefly described with focus on
notation and the standard analysis scheme. The notation
follows that used in Evensen (2003).

2.1 Ensemble representation for P

As in Evensen (2003), we have defined the matrix
holding the ensemble members wi 2 <n,

A ¼ ðw1;w2; . . . ;wN Þ 2 <n�N ; ð1Þ
where N is the number of ensemble members and n is the
size of the model state vector.

The ensemble mean is stored in each column of A
which can be defined as

A ¼ A1N ; ð2Þ
where 1N 2 <N�N is the matrix where each element is
equal to 1=N . We can then define the ensemble pertur-
bation matrix as

A0 ¼ A� A ¼ AðI� 1N Þ: ð3Þ
The ensemble covariance matrix Pe 2 <n�n can be de-
fined as

Pe ¼
A0ðA0ÞT

N � 1
: ð4Þ

2.2 Measurement perturbations

Given a vector of measurements d 2 <m, with m being
the number of measurements, we can define the N vec-
tors of perturbed observations as

dj ¼ dþ �j; j ¼ 1; . . . ;N ; ð5Þ
which can be stored in the columns of a matrix

D ¼ ðd1; d2; . . . ; dN Þ 2 <m�N ; ð6Þ
while the ensemble of perturbations, with ensemble
mean equal to zero, can be stored in the matrix

E ¼ ð�1; �2; . . . ; �N Þ 2 <m�N ; ð7Þ
from which we can construct the ensemble representa-
tion of the measurement error covariance matrix

Re ¼
EET

N � 1
: ð8Þ

2.3 Analysis equation

The analysis equation, expressed in terms of the
ensemble covariance matrices, is

Aa ¼ Aþ PeH
TðHPeH

T þ ReÞ�1ðD�HAÞ: ð9Þ

Using the ensemble of innovation vectors defined as

D0 ¼ D�HA ð10Þ
and the definitions of the ensemble error covariance
matrices in Eqs. (4) and (8) the analysis can be expressed
as

Aa ¼ Aþ A0A0THT HA0A0THT þ EET
� ��1

D0: ð11Þ

When the ensemble size, N , is increased by adding ran-
dom samples, the analysis computed from this equation
will converge towards the exact solution of Eq. (9) with
Pe and Re replaced by the exact covariance matrices P
and R.

We now introduce the matrix holding the measure-
ments of the ensemble perturbations, S ¼ HA0 2 <m�N ,
and we define the matrix C 2 <m�m as

C ¼ SST þ ðN � 1ÞR; ð12Þ
and the ensemble approximation, Ce, of C as

Ce ¼ SST þ ðN � 1ÞRe ð13Þ
¼ SST þ EET: ð14Þ

Thus, we will consider the use of both a full-rank and
exact measurement error covariance matrix R and the
low-rank representation defined in Eq. (8).

The analysis equation (11) can then be written

Aa ¼ Aþ A0STC�1D0 ð15Þ
¼ Aþ AðI� 1N ÞSTC�1D0 ð16Þ
¼ AðIþ ðI� 1N ÞSTC�1D0Þ ð17Þ
¼ AðIþ STC�1D0Þ ð18Þ
¼ AX; ð19Þ

where we have used Eq. (3) and 1NS
T � 0. The matrix

X 2 <N�N is defined as

X ¼ Iþ STC�1D0: ð20Þ
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Thus, the EnKF analysis becomes a combination of the
forecast ensemble members and is sought for in the
space spanned by the forecast ensemble.

3 A square root algorithm for the EnKF analysis

Several authors have pointed out that the perturbation
of measurements used in the EnKF standard analysis
equation may be an additional source of errors. Some
methods for computing the analysis without introducing
measurement noise have recently been presented, e.g. the
square root schemes presented by Anderson (2001),
Whitaker and Hamill (2002), Bishop et al. (2001) and in
the review by Tippett et al. (2003). Based on these re-
sults, we have used a simpler and more direct variant of
the square root analysis schemes. The perturbation of
measurements is avoided and the scheme solves for the
analysis without imposing any additional approxima-
tions, such as the assumption of uncorrelated measure-
ment errors or knowledge of the inverse of the
measurement error covariance matrix. It does require
the inverse of the matrix, C, but it will later be shown
how this can be computed very efficiently using the low-
rank Ce.

The new algorithm is used to update the ensemble
perturbations and is derived starting from the traditional
analysis equation for the covariance update in the Kal-
man Filter (the time index has been dropped for con-
venience),

Pa ¼ Pf � PfHTðHPfHT þ RÞ�1HPf: ð21Þ

When using the ensemble representation for the error
covariance matrix, P, as defined in Eq. (4), this equation
can be written

Aa0Aa0T ¼ A0ðI� STC�1SÞA0T; ð22Þ

where we have used the definitions of S and C from
Section 2.

The analyzed ensemble mean is computed from the
standard Kalman Filter analysis equation which may be
obtained by multiplication of Eq. (15) from the right
with 1N , i.e. each column in the resulting equation for
the mean, becomes

w
a ¼ w

f þ A0STC�1ðd�Hw
fÞ: ð23Þ

In the remainder of the derivation we have dropped the f
superscripts.

The following derives an equation for the ensemble
analysis by defining a factorization of Eq. (22) where
there are no references to the measurements or mea-
surement perturbations.

Note that in the original EnKF the analysis equation
(11) was derived by inserting the standard update
equation for each ensemble member on the left-hand
side of Eq. (22) and showing that if measurements are
perturbed this will give a result which is consistent with
Eq. (22).

3.1 Derivation of algorithm

We start by forming C as defined in either of Eqs. (12–
14). We will also for now assume that C is of full rank
such that C�1 exists.

We can then compute the eigenvalue decomposition
ZKZT ¼ C, and we obtain:

C�1 ¼ ZK�1ZT; ð24Þ
where all matrices are of dimension m� m. The eigen-
value decomposition may be the most demanding com-
putation required in the analysis when m is large.
However, a more efficient algorithm is presented below.

We now write Eq. (22) as follows:

Aa0Aa0T ¼ A0ðI� STZK�1ZTSÞA0T ð25Þ

¼ A0 I� ðK�1
2ZTSÞTðK�1

2ZTSÞ
h i

A0T ð26Þ

¼ A0ðI� XT
2X2ÞA0T; ð27Þ

where we have defined X2 2 <m�N as

X2 ¼ K�
1
2ZTS; ð28Þ

where rank ðX2Þ ¼ minðm;N � 1Þ.
When computing the singular value decomposition1

(SVD) of X2,

U2R2V
T
2 ¼ X2; ð29Þ

with U2 2 <m�m;R2 2 <m�N and V2 2 <N�N , Eq. (27)
can be written

Aa0Aa0T ¼ A0ðI� ½U2R2V
T
2 �

T½U2R2V
T
2 �ÞA0T ð30Þ

¼ A0ðI� V2R
T
2R2V

T
2 ÞA0T ð31Þ

¼ A0V2ðI� RT
2R2ÞVT

2A
0T ð32Þ

¼ A0V2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I� RT

2R2

q� �
A0V2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I� RT

2R2

q� �T

: ð33Þ

Thus, a solution for the analysis ensemble perturbations
is

Aa0 ¼ A0V2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I� RT

2R2H
T:

q
ð34Þ

Note that the additional multiplication with a random
orthogonal matrix HT also results in a valid solution.
Such a random redistribution of the variance reduction
among the ensemble memebers, is in some cases neces-
sary and should be used by default. The matrix HT is
easily constructed, e.g., by using the right singular vec-
tors from a singular value decomposition of a random
N � N matrix.

1 The singular value decomposition of a rectangular matrix
A 2 <m�n is A ¼ URVT, where U 2 <m�m and V 2 <n�n are
orthogonal matrices and R 2 <m�n contains the p ¼ minðm; nÞ
singular values r1 � r2 � � � � � rp � 0 on the diagonal. Further,
UTAV ¼ R. Note that numerical algorithms for computing the
SVD when m > n often offer to compute only the first p singular
vectors in U since the remaining singular vectors (columns in U) are
normally not needed. However, for the expression UUT ¼ I to be
true the full U must be used.
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3.2 Implementation of algorithm

The algorithm requires the following steps:

1. Form C and compute the eigenvalue decomposition:
ZKZT ¼ C.

2. Update the ensemble mean from the equation

w
a ¼ w

f þ A0STZK�1ZTðd�Hw
fÞ; ð35Þ

using the following sequence of matrix-vector multipli-
cations:

a) y1 ¼ ZTðd�Hw
fÞ,

b) y2 ¼ K�1y1,
c) y3 ¼ Zy2,

d) y4 ¼ STy3,

e) w
a ¼ w

f þ A0y4.

3. Evaluate the matrix: X2 ¼ K�
1
2ZTS.

4. Compute the SVD: U2R2V
T
2 ¼ X2.

5. Then evaluate the analyzed ensemble perturbations

from Aa0 ¼ A0V2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I� RT

2R2H
T

q
and add the ensemble

mean, w
a
, to the analyzed perturbations.

In Appendix B it is shown that the analysis ensemble
resulting from the square root algorithm still becomes a
combination of the forecast ensemble as was discussed in
Evensen (2003).

4 An improved sampling scheme

We start by defining an error covariance matrix P. We
can assume this to be the initial error covariance matrix
for the model state. Given P we can compute the
eigenvalue decomposition

P ¼ ZKZT; ð36Þ
where the matrices Z and K contain the eigenvectors and
eigenvalues of P. In the SEIK filter by Pham (2001) an
algorithm was used where the initial ensemble was
sampled from the first dominant eigenvectors of P. This
introduces a maximum rank and conditioning of the
ensemble matrix and also ensures that the ensemble, best
possibly represents the error covariance matrix for a
given ensemble size. In other words, we want to generate
A such that rank ðAÞ ¼ N and the condition number
defined as the ratio between the singular values,
j2ðAÞ ¼ r1ðAÞ=rN ðAÞ, is minimal. If the ensemble
members stored in the columns of A are nearly depen-
dent, then j2ðAÞ is large.

Now, approximate the error covariance matrix with
its ensemble representation, Pe ’ P. We can then write

Pe ¼
1

N � 1
A0ðA0ÞT ð37Þ

¼ 1

N � 1
URVTVRUT ð38Þ

¼ 1

N � 1
UR2UT; ð39Þ

where A0 contains the ensemble perturbations as defined
in Eq. (3), U, R and VT result from a singular value
decomposition and contain the singular vectors and
singular values of A0. In the limit when the ensemble size
goes to infinity the n singular vectors in U will converge
towards the n eigenvectors in Z and the square of the
singular values, R2, divided by N � 1, will converge to-
wards the eigenvalues, K.

This shows that there are two strategies for defining
an accurate approximation, Pe, of P.

1. We can increase the ensemble size, N , by sampling
additional model states and adding these to the
ensemble. As long as the addition of new ensemble
members increases the space spanned by the overall
ensemble, this will result in an ensemble covariance,
Pe, which is a more accurate representation of P.

2. Alternatively we can improve the rank/conditioning
of the ensemble by ensuring that the first N singular
vectors in U are similar to the N first eigenvectors in
Z. Thus, the absolute error in the representation Pe of
P will be smaller for ensembles generated with such
an improved sampling than for Monte Carlo
ensembles of a given moderate ensemble size.

This first approach is the standard Monte Carlo method
used in the traditional EnKF where the convergence is
slow. The second approach has a flavour of quasirandom
sampling, which ensures much better convergence with
increasing sample size, i.e. we choose ensemble members
which have less linear dependence and therefore span a
larger space. These two strategies are, of course, used in
combination when the initial ensemble is created.

For most applications the size of P is too large to
allow for the direct computation of eigenvectors. An
alternative algorithm for generating an N member
ensemble with better conditioning is to first generate a
start ensemble which is larger than N , and then to res-
ample N members along the first N dominant singular
vectors of this larger start ensemble.

The algorithm goes as follows. First, sample a large
ensemble of model states with, e.g., b times N members,
and store the ensemble perturbations in Â0 2 <n�bN .
Then perform the following steps:

1. Compute the SVD, Â0 ¼ ÛR̂V̂T, where the columns
of Û are the singular vectors and the diagonal of R̂
contains the singular values ri (note that with a
multivariate state it may be necessary to scale the
variables in Â0 first).

2. Retain only the first N � N quadrant of R̂ which is
stored in R 2 <N�N , i.e. ri ¼ 0; 8i > N .

3. Scale the non-zero singular values with
ffiffiffi
b
p

(needed to
retain the correct variance in the new ensemble).

4. Generate a random orthogonal matrix VT
1 2 <N�N ,

(could be the matrix VT
1 from a SVD of a random

N � N matrix, Y ¼ U1R1V
T
1 , which is computed very

quickly).
5. Generate an N -member ensemble using only the first

N singular vectors in Û (stored in U), the non-zero
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singular values stored in R and the orthogonal matrix
VT

1 .

Thus, we are using the formula

A0 ¼ U
1
ffiffiffi
b
p RVT

1 : ð40Þ

When the size of the start ensemble approaches infin-
ity, the singular vectors will converge towards the
eigenvectors of P. It is, of course, assumed that the
ensemble perturbations are sampled with the correct
covariance as given by P. As long as the initial ensemble
is chosen large enough, this algorithm will provide an
ensemble which is similar to what is used in the SEIK
filter, and the SVD algorithm has a lower computational
cost than the explicit eigenvalue decomposition of P
when n is large.

Before the ensemble perturbation matrix, A0, is used,
it is important to ensure that the mean is zero and the
variance is as specified. This can be done by subtracting
an eventual ensemble mean and then rescaling the
ensemble members to obtain the correct variance. As
will be seen below, this has a positive impact on the
quality of the results. Note that the removal of the mean
of the ensemble leaves the maximum possible rank of A0

to be N � 1.
As an example, a 100-member ensemble has been

generated using start ensembles of 100; 200 . . . 800
members. The size of the one-dimensional model state is
1001 and the characteristic length scale of the solution is
four grid cells. The singular values (normalized to the
first singular value) for the resulting ensemble is plotted
in Fig. 1 for the different sizes of start ensemble. Clearly,
there is a benefit in using this sampling strategy. The
ratio between singular values 100 and 1 is 0.21 when
standard sampling is used. With increasing size of the
start ensemble the conditioning improves until it reaches
0.59 for 800 members in the start ensemble.

5 Impact of improved sampling

The following discussion provides some background on
the relative impact and importance of the use of
improved sampling for the initial ensemble, the model
noise and the measurement perturbations.

5.1 Preservation of rank during model integration

Assume a linear model operator is defined by the full
rank matrix F. With zero model noise the ensemble at a
later time, tk, can then be written as

Ak ¼ F kA0: ð41Þ
Thus, the rank introduced in the initial ensemble will be
preserved as long as F is full-rank, and Ak will span the
same space as A0.

With system noise the time evolution of the ensemble
becomes

Ak ¼ F kA0 þ
Xk

i¼1
F k�iQi; ð42Þ

where Qi denote the ensemble of model noise used at
time ti. Thus, the rank and conditioning of the ensemble
will also depend on the rank and conditioning of the
model noise introduced.

For a non-linear model operator, fðw; qÞ, where q is
the model noise, the evolution of the ensemble can be
written as

Ak ¼ fk ð. . . f2 ðf1 ðA0;Q1Þ;Q2Þ . . .QkÞ: ð43Þ
Using a non-linear model there is no guarantee that the
non-linear transformations will preserve the rank of A,
and the introduction of wisely sampled model noise may
be crucial to maintain an ensemble with good rank
properties during the simulation. Thus, the same pro-
cedure as used when generating the initial ensemble
should be used when simulating the system noise. This
will ensure that a maximum rank is introduced into the
ensemble, and this may also counteract any rank
reduction introduced by the model operator.

5.2 The EnKF with a linear perfect model

Let us examine the EnKF with a linear model with no
model errors. Given the initial ensemble stored in A0 and
assume a finite number of time instances, distributed at
regular time intervals, where the forecasted ensemble is
stored and measurements are assimilated.

An ensemble forecast at time tk is then expressed by
Eq. (41).

If the EnKF is used to update the solution at every time
ti, where i ¼ 1; k, the ensemble solution at time tk becomes

Ak ¼ F kA0

Yk

i¼1
Xi; ð44Þ

Fig. 1 The plot shows the normalized singular values of ensembles
which are generated using start ensembles of different sizes. Clearly,
the condition of the ensemble improves when a larger start ensemble is
used
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where Xi is the matrix defined by Eq. (20) which, when
multiplied with the ensemble forecast matrix at time ti,
produces the analysis ensemble at that time (i.e. the X5

matrix of Evensen 2003). Thus, starting with A0, the
assimilation solution at time t1 is obtained by multipli-
cation of F with A0 to produce the forecast at time t1
followed by the multiplication of the forecast with X1.

Note that the expression A0

Qk
i¼1 Xi is the smoother

(EnKS) solution at time t0. Thus, for this model,
Eq. (44) can also be interpreted as a forward integration
of the smoother solution from the initial time, t0, until tk,
where Ak is produced.

This also means that for a linear model in the case
without model errors, the EnKF solution at all times is a
combination of the initial ensemble members, and the
dimension of the affine space spanned by the initial
ensemble does not change with time as long as the
operators F and Xi’s are full-rank. Thus, the quality of
the EnKF solution is dependent on the rank and con-
ditioning of the initial ensemble matrix.

5.3 Generation of measurement perturbations

When the EnKF analysis algorithm in Eq. (15) with
measurement perturbations is used, then the improved
sampling procedure should also be used when generating
the perturbations. This will lead to a better conditioning
of the ensemble of perturbations, which will have an
ensemble representation Re, which is closer to R. The
impact of improved sampling of measurement pertur-
bations is significant and will be demonstrated in the
examples below.

6 Experiments

The impact of the improved sampling scheme and the
use of an analysis scheme where measurements are not
perturbed will now be examined in some detail.

6.1 Model description and initialization

The model used in the following experiments is a
one-dimensional linear advection model on a periodic
domain of length 1000. The model has a constant
advection speed, u ¼ 1:0, the grid spacing is Dx ¼ 1:0 and
the time step is Dt ¼ 1:0. Given an initial condition, the
solution of this model is exactly known, and this allows
us to run realistic experiments with zero model errors to
better examine the impact of the choice of initial
ensemble in relation to the choice of analysis scheme.

The true initial state is sampled from a distribution,
N, with mean equal to 0, variance equal to 1, and a
spatial decorrelation length of 20. Thus, it is a smooth
periodic pseudorandom solution consisting of a super-
position of waves with different wave lengths, where the

shorter waves are penalized, and where each wave has a
random phase.

The first guess solution is generated by drawing an-
other sample from N and adding this to the true state.
The initial ensemble is then generated by adding samples
drawn from N to the first guess solution. Thus, the
initial state is assumed to have error variance equal to 1.

Four measurements of the true solution, distributed
regularly in the model domain, are assimilated every
fifth time step. The measurements are contaminated by
errors of variance equal to 0.01, and we have assumed
uncorrelated measurement errors.

The length of the integration is 300, which is 50 time
units longer than the time needed for the solution to
advect from one measurement to the next (i.e. 250 time
units).

In most of the following experiments an ensemble size
of 100 members is used. A larger start ensemble is used in
many of the experiments to generate ensemble members
and/ormeasurement perturbationswhich provide a better
representation of the error covariance matrix. Otherwise,
the experiments differ in the sampling of measurement
perturbations and the analysis scheme used.

In Fig. 2 an example is shown from one of the
experiments. The plots illustrate the convergence of the
estimated solution at various times during the experi-
ment, and show how information from measurements is
propagated with the advection speed and how the error
variance is reduced.

6.2 Analysis schemes

Two versions of the analysis scheme are available:

Analysis 1: This is the standard EnKF analysis
solving Eq. (15), using perturbation of measure-
ments.
Analysis 2: This is a so-called square root imple-
mentation of the analysis scheme where the pertur-
bation of measurements is avoided. The algorithm is
described in Section 3.

Both algorithms form a full-rank matrix
C ¼ SST þ ðN � 1ÞR and then factorize it by computing
the eigenvalue decomposition. In cases with many
measurements, the computational cost becomes large
since Nm2 operations are required to form the matrix
and the eigenvalue decomposition requires Oðm3Þ oper-
ations. An alternative inversion algorithm which reduces
the factorization of the m� m matrix to a factorization
of an N � N matrix is presented in Section 7.3.

6.3 Overview of experiments

Several experiments have been carried out as listed in
Table 1. For each of the experiments, 50 EnKF simula-
tions were performed to allow for a statistical compari-
son. In each simulation, the only difference is the random
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seed used. Thus, every simulation will have a different
and random true state, first guess, initial ensemble, set of
measurements and measurement perturbations.

In all the experiments the residuals were computed as
the root mean square (RMS) errors of the difference
between the estimate and the true solution taken over
the complete space and time domain. For each of the
experiments we plotted the mean and standard deviation
of the residuals in Fig. 3.

Table 2 gives the probabilities that the average
residuals from the experiments are equal, as computed
from the Student’s t-Test. Probabilities lower than, say,
0.5, indicate statistically that the distributions from two

experiments are significantly different. When selecting a
method or approach, one should use the one which has a
distribution with the lowest average residual, and pos-
sibly also a low variance of the residuals.

It is also of interest to examine how well the predicted
errors represent the actual residuals (RMSas a function of
time). In Figs. 4 and 5 we have plotted the average of the
predicted errors from the 50 simulations as the thick full
line. The thin full lines indicate the one standard deviation
spread of the predicted errors from the 50 simulations.
The average of the RMS errors from the 50 simulations is
plotted as the thick dotted line, with associated one
standard deviation spread shown by the dotted thin lines.

Fig. 2 Example of an EnKF
experiment: reference solution,
measurements, estimate and
standard deviation at three dif-
ferent times t=5.0 (top), t=150.0
(centre), and t=300.0 (bottom)
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Table 1 Summary of experi-
ments. The first column is the
experiment name, in the second
column N is the ensemble size
used, then Sample fix is true or
false and indicates if the sample
mean and variance is corrected,
bini is a number which defines
the size of the start ensemble
used for generating the initial
ensemble as biniN , similarly bmes
denote the size of the start en-
semble used for generating the
measurement perturbations,
followed by the analysis algo-
rithm used. The last two col-
umns contain the average RMS
errors of the 50 simulations in
each experiment and the stan-
dard deviation of these

Experiment N Sample fix bini bmes Analysis Residual Std. dev.

A 100 F 1 1 1 0.762 0.074
B 100 T 1 1 1 0.759 0.053
C 100 T 2 1 1 0.715 0.065
D 100 T 4 1 1 0.683 0.062
E 100 T 6 1 1 0.679 0.071
F 100 T 1 2 0.688 0.060
G 100 T 6 2 0.586 0.046
H 100 T 6 30 1 0.627 0.053
I 100 T 1 30 1 0.706 0.060
B150 150 T 1 1 1 0.681 0.053
B200 200 T 1 1 1 0.651 0.061
B250 250 T 1 1 1 0.626 0.058
G50 50 T 12 2 0.784 0.088
G52 52 T 12 2 0.738 0.072
G55 55 T 11 2 0.693 0.068
G60 60 T 10 2 0.643 0.069
G75 75 T 8 2 0.604 0.042

Fig. 3 Mean and Standard devi-
ation of the residuals from each
of the experiments

Table 2 Statistical probability that two experiments provide an equal mean for the residuals as computed using the Student’s t-Test. A
probability close to one indicates that it is likely that the two experiments provide distributions of residuals with similar mean. The t-test
numbers higher than 0.5 are printed in bold

Exp B B150 B200 B250 C D E F G G50 G52 G55 G60 G75 H I

A 0.86 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.17 0.11 0.00 0.00 0.00 0.00 0.00
B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.10 0.00 0.00 0.00 0.00 0.00
B150 0.01 0.00 0.01 0.86 0.86 0.53 0.00 0.00 0.00 0.34 0.00 0.00 0.00 0.03
B200 0.04 0.00 0.01 0.04 0.00 0.00 0.00 0.00 0.00 0.52 0.00 0.04 0.00
B250 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.19 0.03 0.91 0.00
C 0.01 0.01 0.03 0.00 0.00 0.10 0.10 0.00 0.00 0.00 0.48
D 0.75 0.68 0.00 0.00 0.00 0.45 0.00 0.00 0.00 0.06
E 0.48 0.00 0.00 0.00 0.32 0.01 0.00 0.00 0.04
F 0.00 0.00 0.00 0.72 0.00 0.00 0.00 0.13
G 0.00 0.00 0.00 0.00 0.04 0.00 0.00
G50 0.01 0.00 0.00 0.00 0.00 0.00
G52 0.00 0.00 0.00 0.00 0.02
G55 0.00 0.00 0.00 0.29
G60 0.00 0.21 0.00
G75 0.02 0.00
H 0.00
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The further details of the different experiments are
described below.

Exp. A is the pure Monte Carlo case using a start
ensemble of 100 members where all random variables
are sampled ‘‘randomly’’. Thus, the mean and vari-
ance of the initial ensemble and the measurement
perturbations will fluctuate within the accuracy that
can be expected using a 100-member sample size. The
analysis is computed using the standard EnKF
Analysis 1 algorithm.

Exp. B is similar to Exp. A except that the sampled
ensemble perturbations are corrected to have mean
zero and the correct specified variance. This is done by
subtracting an eventual mean from the random sample
and then dividing the members by the square root of
the ensemble variance. As will be seen below, this leads
to a small improvement in the assimilation results and
this correction is therefore used in all the following
experiments. This experiment is used as a reference case
in the further discussion which illustrates the perfor-
mance of the standard EnKF Analysis 1 algorithm.

Exps. C, D and E are similar to Exp. B except that the
start ensembles used to generate the initial 100-
member ensemble contain respectively 200, 400 and
600 members.

Exp. E is used as a reference case illustrating the impact
of the improved initial sampling algorithm.

Exp. F uses the square root algorithm implemented as
Analysis 2, where the perturbation of measurements
is avoided and a start ensemble of 100 members is
used as in Exp. B.

Exp. G uses the square root algorithm as in Exp. F ex-
cept that the initial ensemble is sampled from a start
ensemble of 600 members as in Exp. E. It examines
the benefit of combined use of improved initial sam-
pling and the square root algorithm.

Exp. H examines the impact of improved sampling of
measurement perturbations using the standard EnKF
Analysis 1 algorithm, but is otherwise similar to
Exp. Ewith improved sampling of the initial ensemble.

Exp. I is similar to Exp. H with improved sampling of
measurement perturbations and using the EnKF
Analysis 1 algorithm but, as in Exp. B, it does not
use the improved sampling of initial conditions.

Exps. B150, B200 and B250 are similar to Exp. B but
using respectively ensemble sizes of 150, 200 and 250
members.

Exps. G50, G52, G55, G60 and G75 are similar to
Exp. G but using, respectively, ensemble sizes of 50,
52, 55, 60 and 75 members.

6.4 Impact of improved sampling for the initial ensemble

Using the procedure outlined in Section 4, several
experiments have been performed using start ensembles
of 100–600 members to examine the impact of using an
initial ensemble with better properties.

As can be seen from Fig. 3, the pure Monte Carlo
Exp. A has the poorest performance among the
Exps. A–E. Starting with Exp. A, we find a very small
improvement when we apply the sample correction
(correcting for ensemble mean and variance) in Exp. B.
This correction may become more important if smaller
ensembles are used.

In the Exps. C, D and E, larger start ensembles of
respectively 200, 400 and 600 members are used to
generate the initial 100 member ensemble. Just doubling
the size of the start ensemble to 200 members (Exp. C)
has a significant positive effect on the results, and using a
start ensemble of 400 members (Exp. D) leads to a fur-
ther improvement.

The use of an even larger start ensemble of 600
members (Exp. E) does not provide a statistically sig-
nificant improvement over Exp. D in this particular
application, although this may become different if a
more complex model with a larger state space is used.

When comparing the time evolution of the residuals
and the estimated standard deviations for the Exps. B–E
in Fig. 4, we observe that the residuals show a larger
spread between the simulations than the estimated
standard deviations. The estimated standard deviations
are internally consistent between the simulations per-
formed in each of the experiments. The residuals are also
generally larger than the ensemble standard deviations,
although there is a slight improvement observed due to
the improved sampling of the initial ensemble. It will
become visible below that this discrepancy is to a large
extent caused by the perturbation of measurements in
the analysis scheme, although the initial sampling also
leads to some improvement.

These experiments clearly show that the improved
sampling is justified for the initial ensemble. It is com-
puted only once and the additional computational cost is
marginal.

6.5 Impact of square root analysis algorithms

It has been pointed out by several authors that the
perturbation of measurements introduces an additional
source of sampling errors in the results. In Section 3 we
have presented the algorithm, Analysis 2, which com-
putes the analysis without the use of perturbed mea-
surements.

Let us use the Exps. B and E discussed above as the
EnKF reference cases with and without improved sam-
pling for the initial ensemble. Then we run two experi-
ments, Exp. F and Exp. G, using the square root
algorithm implemented in Analysis 2. Exp. F uses
standard sampling of 100 members as in Exp. B while
Exp. G uses a 600-member start ensemble as in Exp. E.

Referring again to the residuals plotted in Fig. 3, it is
clear that Exp. F provides a significant improvement
compared to Exp. B, which uses the standard EnKF
analysis algorithm. The improvement is similar to what
was found using the improved sampling in Exp. E. The
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combined use of improved sampling of the initial ensem-
ble and the square root algorithm is illustrated in Exp. G
and this leads to a significant further improvement in the
results.

The time evolution of the residuals in Exp. G, plotted
in Fig. 4, shows a fairly good consistency with the

estimated standard deviations. This must be attributed
to the elimination of the measurement perturbations and
the improved sampling used for the initial ensemble.
There is now only a minor underestimation of the pre-
dicted errors compared with the actual residuals.
Clearly, we can only explain total error projected onto
the ensemble space and a larger ensemble should lead to
even better consistency.

In Exp. F, where the standard sampling was used, the
residuals show similar behaviour as in Exp. E.

Fig. 4 Time evolution for RMS residuals (dashed lines) and
estimated standard deviations (full lines). The thick lines show the
means over the 50 simulations and the thin lines show the means
plus/minus one standard deviation
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6.6 Improved sampling of measurement perturbations

We have shown that the square root algorithm, which
avoids the perturbation of measurements, provides a
significant improvement in the results in the EnKF
(Exps. F and G). However, it is also possible to improve
the sampling of the measurement perturbations using

the same algorithm as was used for the initial ensemble,
and this should lead to results closer to those obtained in
Exps. F and G, when using the standard EnKF analysis
algorithms.

The Exps. H and I use the improved sampling of
measurement perturbations with a large start ensemble
of perturbations (30 times the ensemble size) and the
solution is found using Analysis 1. The impact of this
improved sampling is illustrated by comparing the
Exp. I with Exps. B and F, and then Exp. H with
Exps. E and G, in Fig. 3.

Fig. 5 Time evolution for RMS residuals (dashed lines) and
estimated standard deviations (full lines). The thick lines show
the means over the 50 simulations and the thin lines show the
means plus/minus one standard deviation
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There is clearly a significant positive impact resulting
from the improved sampling of measurement perturba-
tions. The Exp. I leads to an improvement which is
nearly as good as was obtained using the square root
algorithm in Exp. F. The use of improved sampling for
both the initial ensemble and the measurement pertur-
bations in Exp. H results in a solution with residuals
located somewhere between the Exps. E and G. Thus, a

significant improvement is obtained from the improved
sampling of the measurement perturbations, but the
square root algorithm is still superior in the example
shown here.

Comparison of the time evolution of residuals for
Exps. H and I in Fig. 5 also confirms that the pertur-
bation of measurements is a major cause for the over-
estimate of residuals. In Exps. H and I the improved
sampling scheme is used for the measurement pertur-
bations and this significantly improves the results com-
pared to the Exps. B–E.

Fig. 6 Time evolution of the ensemble singular value spectra for
some of the experiments
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6.7 Impact from ensemble size

It is of interest to quantify the benefit of using the im-
proved algorithms by running the traditional EnKF
with increasing ensemble size. In these experiments we
correct only for the mean and variance in the ensemble,
something which is always done in practical applica-
tions. We have run the Exps. B150, B200 and B250

which are equivalent to Exp. B except for the ensemble
size, which is respectively 150, 200 and 250.

From Fig. 3 it is seen that the traditional EnKF with
between 150 and 200 members gives results which are of
a quality similar to those of the EnKF, with improved
initial sampling using a start ensemble of 600. When
using 200 and 250 members, an additional improvement
in the results is found but it is still far to go before we
obtain the same result as in Exp. G. Also in Fig. 5 it is
seen that an improvement is obtained when the ensemble
size is increased.

Fig. 7 Time evolution of the ensemble singular value spectra for
some of the experiments
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It was also found when comparing Exps. B150 and
B200 with Exp. F that an ensemble size between 150 and
200 is needed in the standard EnKF to obtain
improvement similar to that obtained from the use of the
Analysis 2 with standard sampling of a 100-member
initial ensemble.

From these experiments it is clear that a rather large
ensemblemust be used in the standardEnKF tomatch the
results of Exp. G. Additional experiments were run using
improved initial sampling in combination withAnalysis 2
(as in Exp. G), but with smaller ensembles. From these
experiments we obtained results similar to Exp. B using
only around 50–52 members in the ensemble, as seen in
Fig. 3. The time evolution of the residuals for Exp. G50 is
shown in Fig. 5 and is similar to Exp. B. There seemed to
be a breakpoint between 60 and 75 members where the
residuals in the G experiments became consistent with the
estimated standard deviations.

Thus, it seems that the convergence properties of the
EnKF using the Analysis 2 together with the improved
sampling are faster with increasing ensemble size than in
the standard EnKF. Using Exp. G50 as a reference, we
need to double the ensemble size with the standard
EnKF in Exp. B, to obtain similar results. Further, the
Exp. B200 is still far from the results obtained with
Exp. G using 100 members of the ensemble. This can be
expected from the theory of quasi-random sampling,
which converges proportional to N rather than propor-
tional to

ffiffiffiffi
N
p

in standard Monte Carlo sampling.
The improvement obtained by the improved sam-

pling could be utilized to apply the filter algorithm with
an ensemble size smaller than used for the normal EnKF
algorithm while still obtaining a comparable residual.
This configuration will lead to a much shorter comput-
ing time.

6.8 Evolution of ensemble singular spectra

Finally, it is of interest to examine how the rank and
conditioning of the ensemble evolves in time and is im-
pacted by the computation of the analysis. In Figs. 6
and 7 we have plotted the singular values for the
ensemble at each analysis time for the same experiments
as shown in Figs. 4 and 5. The initial singular spectrum
of the ensemble is plotted as the upper thick line. Then
the dotted lines indicate the reduction of the ensemble
variance introduced at each analysis update, until the
end of the experiment, where the singular spectrum is
given by the lower thick line.

It is clear from Exps. B, C, D and E that the condi-
tioning of the initial ensemble improves when the new
sampling scheme is used. It is also seen that the tradi-
tional EnKF analysis equation lead to a reduction of
variance for all the singular values.

The spectra change dramatically when the square
root algorithm is used in Exps. F and G. The initial
spectra are similar to the ones in Exps. B and E, but now
the reduction of variance is more confined to the dom-

inant singular values and there is no reduction at all for
the least significant singular values. At the final time the
singular spectrum is almost flat up to a certain singular
value, which is in contrast to the singular spectra
obtained when measurements were perturbed. This
shows that the square root scheme weights the singular
vectors in an equal way. In these experiments it appears
that the error space is large enough for the solution to
converge. In the Exp. G50 all singular values experience
a similar reduction of variance, indicating that addi-
tional ensemble members should be included to better
represent the error space.

As expected, the Exp. H shows a behaviour which is
somewhere in between what we found in Exps. E and G,
while the Exp. I shows a behaviour which is somewhere
in between what we found in Exps. B and F.

Finally, it is seen from Exps. B, B150, B200 and B250
that increasing the ensemble size does not add much to
the representation of variance in the error subspace. This
can be expected with the simple low-dimensional model
state considered here.

7 A low-rank square root analysis scheme

In the following we will present an analysis of the case
when a low-rank representation is used for the mea-
surement error covariance matrix R. The use of the
pseudo-inverse is discussed, and the rank issues pre-
sented by Kepert (2004) are further analyzed. It is shown
that a stable inverse can be computed in the case when a
low-rank Re is used instead of the full-rank R. This leads
to the derivation of a very efficient analysis scheme
which can be used both when Re is of full rank and when
a low-rank representation is used.

7.1 A pseudo-inverse for C

When the dimension of C is large, it is possible that
C becomes numerically singular even when using a
full-rank R in the definition (12). If the low-rank
approximations in Eqs. (13) and (14) are used, then C
may become singular, as is further discussed in the fol-
lowing section.

When C is singular it is possible to compute the
pseudo-inverse Cþ of C. It is convenient to formulate the
analysis schemes in terms of the pseudo-inverse, since
the pseudo-inverse Cþ � C�1 when C is of full rank. The
algorithm will then be valid in the general case.

The pseudo-inverse of the quadratic matrix C with
eigenvalue factorization

C ¼ ZKZT; ð45Þ
is defined as

Cþ ¼ ZKþZT: ð46Þ
The matrix Kþ is diagonal and with p ¼ rankðCÞ it is
defined as
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diag ðKþÞ ¼ ðk�11 ; . . . ; k�1p ; 0; . . . ; 0Þ; ð47Þ
with the eigen values ki � kiþ1.

It is useful to attempt an interpretation of the algo-
rithm used in the square root analysis schemes. We start
by storing the p non-zero elements of diagðKþÞ on the
diagonal of K�1p , i.e.

diagðK�1p Þ ¼ ðk�11 ; . . . ; k�1p Þ: ð48Þ

We then define the matrix containing the first p ei-
genvectors in Z as Zp ¼ ðz1 . . . zpÞ 2 <m�p. It is clear that
the product, ZpK

�1
p ZT

p , is the Moore-Penrose or pseudo-
inverse of the original matrix, C.

We now define the rotated measurement operator
eH 2 <p�n as

eH ¼ ZT
p H; ð49Þ

the p rotated measurements

ed ¼ ZT
p d; ð50Þ

and the p rotated measurements of the ensemble per-
turbations, eS 2 <p�N , as

eS ¼ ZT
p HA0 ¼ eHA0 ¼ ZT

p S: ð51Þ

This corresponds to the use of a measurement antenna
which is oriented along the p dominant principal direc-
tions of the original matrix (see Bennett 1992, Chap. 6).
The analysis equation for the ensemble mean Eq. (23)
can then be written

w
a ¼ w

f þ A0eSTK�1p ðed� eHw
fÞ: ð52Þ

Thus, the analysis is just the assimilation of the p
rotated measurements where the matrix in the inverse is
diagonal.

The update for the measurement perturbations is
defined by Eq. (22), which can be rewritten as

Aa0Aa0T ¼ A0 I� eSTK�1p
eS

� �
A0T: ð53Þ

This pseudo-inverse will in some cases lead to a loss of
rank in the analyzed ensemble, as is discussed in the
following section.

7.2 Rank issues

It has recently been shown by Kepert (2004) that the use
of an ensemble representation, Re, for R in some cases
leads to a loss of rank in the ensemble when m > N .
However, it is not obvious that the case with m > N and
the use of a low-rank representation Re of R, should
pose a problem. After all, the final coefficient matrix
which is multiplied with the ensemble forecast to pro-
duce the analysis is an N � N matrix. The rank problem
may occur using both the EnKF analysis scheme with
perturbation of measurements and the square root
algorithm presented in Section 3.

The following will revisit the proof by Kepert (2004)
and extend it to a more general situation. Further, it will

be shown that the rank problem can be avoided when
the measurement perturbations, used to represent the
low-rank measurement error covariance matrix, are
sampled under specific constraints.

The EnKF analysis equation (19) can be rewritten as

A ¼ Aþ A0STðSST þ EETÞþðD�HAÞ
þ A0 þ A0STðSST þ EETÞþðE� SÞ; ð54Þ

where the first line is the update of the mean and the
second line is the update of the ensemble perturbations.
Thus, for the standard EnKF it suffices to show that
rank ðWÞ ¼ N � 1 is sufficient to conserve the full rank
of the state ensemble, with W defined as

W ¼ I� STðSST þ EETÞþðS� EÞ: ð55Þ
Similary, for the square root algorithm W is redefined
from Eq. (22) as

W ¼ I� STðSST þ EETÞþS: ð56Þ
We consider the case when m > N � 1, which was

shown to cause problems in Kepert (2004). Define
S 2 <m�N with rank ðSÞ ¼ N � 1, where the columns of
S span a subspace S of dimension N � 1. Further, we
define E 2 <m�q with rankðEÞ ¼ minðm; q� 1Þ, where E
contains an arbitrary number, q, of measurement per-
turbations.

As in Kepert (2004), one can define the matrix
Y 2 <m�ðNþqÞ as

Y ¼ ðS;EÞ; ð57Þ
and the matrix C becomes

C ¼ YYT; ð58Þ
with rank

p ¼ rankðYÞ ¼ rankðCÞ: ð59Þ
Dependent on the definition for E, we have
minðm;N � 1Þ � p � minðm;N þ q� 2Þ. One extreme is
the case where q � N and E is fully contained in S, in
which case we have p ¼ N � 1. The case considered in
Kepert (2004) is another extreme. It had q ¼ N , and
p ¼ minðm; 2N � 2Þ, which was also implicitely assumed
when setting SET ¼ 0 in the approximate factorization
introduced in Evensen (2003). This also corresponds to a
situation which is likely to occur when E is sampled
randomly with components along the N � 1 directions
in S?.
We define the SVD of Y as

URVT ¼ Y; ð60Þ
with U 2 <m�m, R 2 <m�ðNþqÞ and V 2 <ðNþqÞ�ðNþqÞ.
The pseudo-inverse of Y is defined as

Yþ ¼ VRþUT; ð61Þ
where Rþ 2 <ðNþqÞ�m is diagonal and defined as
diagðRþÞ ¼ ðr�11 ; r�12 ; . . . ; r�1p ; 0; . . . ; 0Þ.

Both the equations for W in Eqs. (56) and (57) can be
rewritten in a form similar to that used by Kepert (2004).
Introducing the expressions (60) and (61) in Eq. (56),
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and defining IN to be the N -dimensional identity matrix,
we obtain

W ¼ IN � ðIN ; 0ÞYTðYYTÞþYðIN ; 0ÞT ð62Þ
¼ IN � ðIN ; 0ÞVRTRþTRþRVTðIN ; 0ÞT ð63Þ

¼ ðIN ; 0ÞV INþq � Ip 0

0 0

� �

Nþq

( )

� VTðIN ; 0ÞT ð64Þ

¼ ðIN ; 0ÞV
0 0

0 INþq�p

� �

Nþq
VTðIN ; 0ÞT: ð65Þ

The similar expression for W in Eq. (55) is obtained by
replacing the rightmost matrix, ðIN ; 0Þ 2 <N�ðNþqÞ, with
ðIN ;�IN ; 0Þ 2 <N�ðNþqÞ.

We need the N þ q matrix in Eq. (65) to have rank at
least N � 1 to maintain the rank of the updated
ensemble perturbations. Thus, we require that
N þ q� p � N � 1 and obtain the general condition

p � qþ 1: ð66Þ
With q ¼ N this condition requires p � N þ 1. This is
only possible when all singular vectors of E, except two,
are contained in S. Thus, it is clear that a low-rank
representation of R using N measurement perturbations,
E, can be used as long as the selected perturbations do
not increase the rank of Y to more than N þ 1.

It is also clear that if this constrained low-rank rep-
resentation, E 2 <m�N , is unable to properly represent
the real measurement error covariance, it is possible to
increase the number of perturbations to an arbitrary
number q > N as long as the rank, p, satisfies the con-
dition (66).

In Kepert (2004) it was assumed that the rank
p ¼ 2N � 2, i.e. E has components in N � 1 directions of
S?. Then, clearly, the condition (66) is violated and this
results in a loss of rank. It was showed that this can be
resolved using a full-rank measurement error covariance
matrix (corresponding to the limiting case when
q � mþ 1). Then, p ¼ rank ðYÞ ¼ rank ðReÞ ¼ m and
the condition (66) is always satisfied.

Assume now that we have removed r columns from
E 2 <m�ðq¼mþ1Þ. We then obtain the reduced
~E 2 <m�ðq¼mþ1�rÞ of rank equal to m� r. In this situ-
ation we can consider two cases. First, if the removed
perturbations are also fully contained in S, then this
does not lead to a reduction of p, which still equals m.
In this case we can write the condition (66), for
r � N � 1, as

p ¼ m � mþ 2� r; ð67Þ
which is violated for r > 2. Secondly, assume that the
removed perturbations are fully contained in S?. Then
the rank p will be reduced with r and we write the
condition (66) as

p ¼ m� r � mþ 2� r: ð68Þ
We can continue to remove columns of E contained in
S?, without violating the condition (66), until

there are only N � 1 columns left in ~E, all contained
in S.

From this discussion, it is clear that we need the
measurement error perturbations to explain variance
within the ensemble space S. This will now be used in
the following discussion to reformulate the square root
analysis scheme as an efficient and stable algorithm
which exploits that the analysis is computed in the
ensemble subspace.

7.3 A stable pseudo-inverse of C

From the previous discussion it is clear that we need to
use measurement perturbations which are contained in
S to avoid the loss of rank in the analyzed ensemble.
This now forms the foundation for the derivation of an
algorithm where the inverse is computed in the N -
dimensional ensemble space rather than the m-dimen-
sional measurement space.

The key to this algorithm is a new approach for
computing the inverse of C in the case when m > N � 1.
The case when m � N � 1 is trivial since then C will have
full rank.

We assume again that S has rank equal to N � 1,
which will be the case if the ensemble is chosen properly
and the measurement operator has full rank. The SVD
of S is

U0R0V
T
0 ¼ S; ð69Þ

with U0 2 <m�m, R0 2 <m�N and V0 2 <N�N . The sub-
space S is more precisely defined by the first N � 1
singular vectors of S as contained in U0.

The pseudo-inverse of S is defined as

Sþ ¼ V0R
þ
0 U

T
0 ; ð70Þ

where Rþ0 2 <N�m is diagonal and defined as
diagðRþ0 Þ ¼ ðr�11 ; r�12 ; . . . ; r�1N�1; 0Þ.

The matrix product R0R
þ
0 ¼ ~IN�1 2 <m�m where ~IN�1

has the first N � 1 diagonal elements equal to one and
the rest of the elements in the matrix are zero.

We now use this in the expression for C, as defined in
Eq. (12), to obtain

C ¼ ðU0R0R
T
0U

T
0 þ ðN � 1ÞRÞ ð71Þ

¼ U0ðR0R
T
0 þ ðN � 1ÞUT

0RU0ÞUT
0 ð72Þ

� U0R0ðIþ ðN � 1ÞRþ0 UT
0RU0R

þT
0 ÞRT

0U
T
0 ð73Þ

¼ SST þ ðN � 1ÞðSSþÞRðSSþÞT: ð74Þ
In Eq. (72), the matrix UT

0RU0 is the projection of the
measurement error covariance matrix, R, onto the space
spanned by the m singular vectors of S, contained in the
columns of U0.

Then in Eq. (73) we introduce an approximation
by effectively multiplying UT

0RU0 from left and right
by the matrix R0R

þ
0 ¼ ~IN�1 2 <m�m, Thus, we extract the

part ofR contained in the subspace consisting of theN � 1
dominant directions in U0, i.e. the subspace S.
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The matrix SSþ ¼ U0
~IN�1U

T
0 in Eq. (74) is a Her-

mitian and normal matrix. It is also an orthogonal
projection ontoS. Thus we essentially adopt a low-rank
representation for R which is contained in the same
subspace as the ensemble perturbations in S.

It is now interesting to observe that if we replace R
with a low-rank version ðN � 1ÞRe ¼ EET, then

C ¼ SST þ EET ð75Þ
� SST þ ðSSþÞEETðSSþÞ ð76Þ
¼ SST þ bE bET; ð77Þ

where bE ¼ ðSSþÞE is the projection of E onto the first
N � 1 singular vectors in U0. Thus, we can only ac-
count for the measurement variance contained in the
subspace S. When we project E onto S we reject all
possible contributions in S?. It is this rejection which
ensures that we avoid the loss of rank reported by
Kepert (2004).

There are now two cases to consider. The first is when
a full measurement error covariance matrix is specified.
It may be of full rank or not. The second case considers
the use of a low-rank representation using ensemble
perturbations, E.

If we use Eqs. (69) and (24) in Eq. (22), we obtain

I� STC�1S ¼ I� V0R
T
0U

T
0ZK�1ZTU0R0V

T
0 : ð78Þ

Thus, it is seen that only the part of C contained in S is
accounted for since Z is projected onto the N � 1 sig-
nificant singular vectors in U0. Thus, there is really no
benefit from using a full-rank R except that one then
knows for sure that it will have non-zero contributions
in all of S, which is necessary to avoid loss of rank in
the updated ensemble perturbations. When using the
low-rank representation it is important to ensure that
the ensemble stored in E spans the space S. Thus, the
projected E is orthogonal to S?.

Thus, we now proceed with a low-rank representation
for R as the general case. Replacing ðN � 1ÞR with EET

in Eq. (73) we obtain:

C � U0R0ðIþ Rþ0 U
T
0EE

TU0R
þT
0 ÞRT

0U
T
0 ð79Þ

¼ U0R0ðIþ X0X
T
0 ÞRT

0U
T
0 ; ð80Þ

where we have defined

X0 ¼ Rþ0 U
T
0E; ð81Þ

which is an N � N matrix of with rank equal to N � 1
and it requires mN 2 þ N2 floating point operations to
form it. The approximative equality sign introduced in
Eq. (79) just denotes that all components in E contained
inS? have now been removed. This does not impact the
analysis result and if E was sampled from S to exactly
represent UT

0RU0, the exact equality would be satisfied,
thus we do not continue to use the approximative
equality sign below.

We then proceed with a singular value decomposition

U1R1V
T
1 ¼ X0; ð82Þ

where all matrices are N � N , and insert this in Eq. (80)
to obtain:

C ¼ U0R0ðIþU1R
2
1U

T
1 ÞRT

0U
T
0 ð83Þ

¼ U0R0U1ðIþ R2
1ÞUT

1RT
0U

T
0 : ð84Þ

Now the pseudo-inverse of C becomes

Cþ ¼ ðU0R
þT
0 U1ÞðIþ R2

1Þ
�1ðU0R

þT
0 U1ÞT ð85Þ

¼ X1ðIþ R2
1Þ
�1XT

1 ; ð86Þ
where we have defined X1 2 <m�N of rank N � 1 as

X1 ¼ U0R
þT
0 U1: ð87Þ

7.4 Efficient square root algorithm with low rank R

A slight modification is now introduced to the square
root scheme derived in Section 3 which exploits the use
of a low-rank representation for R.

7.4.1 Derivation of algorithm

We start by defining the same SVD of S as in Eq. (69),
then use the definition (14) for C.

Using the expression (86) for the inverse in Eq. (22)
we obtain the following derivation of the analysis
scheme

Aa0Aa0T¼A0 I�STCþS
� �

A0T ð88Þ
¼A0 I�STX1ðIþR2

1Þ
�1XT

1S
� �

A0T ð89Þ

¼A0 I�½ðIþR2
1Þ
�1

2XT
1S�

T½ðIþR2
1Þ
�1

2XT
1S�

� �
A0T ð90Þ

¼A0 I�XT
2X2

� �
A0T; ð91Þ

where we have defined X2 as

X2 ¼ ðIþ R2
1Þ
�1

2XT
1S ¼ ðIþ R2

1Þ
�1

2UT
1

~IN�1V
T
0 ; ð92Þ

We then end up with the same final update Eq. (34)
by following the derivation defined in Eqs. (29–33).

Thus, we have replaced the explicit factorization of
C 2 <m�m, with a SVD of S 2 <m�N , and this is a sig-
nificant saving when m	 N . Further, by using a low
rank version for R we replace the matrix multiplication
Rþ0 U

T
0 R in Eq. (73) with the less expensive Rþ0 U

T
0E. The

sampling of E can be done efficiently, e.g. using the
algorithm described in Evensen (2003). Thus, there are
no matrix operations which requires Oðm2Þ floating
point operations in the new algorithm.

In Appendix A we have presented the alternative
derivation of this algorithm where a full R (possibly of
low rank) is specified.

7.4.2 Implementation of algorithm

The following steps are performed to compute the
analysis:

1. Compute the SVD from Eq. (69): U0R0V
T
0 ¼ S.

2. Form the matrix product in Eq. (81): X0 ¼ Rþ0 U
T
0E.

3. Compute the singular value decomposition of X0 in
Eq. (82): U1R1V

T
1 ¼ X0.

555



4. Then form the matrix product as defined in Eq. (87):
X1 ¼ U0RþT0 U1.

5. Update the ensemble mean from the equation

�w
a ¼ �w

f þ A0STX1ðIþ R2
1Þ
�1XT

1 ðd�H�w
fÞ; ð93Þ

using the following sequence of matrix-vector multipli-
cations:

a) y0 ¼ XT
1 ðd�H�w

fÞ,
b) y2 ¼ ðIþ R2

1Þ
�1y0,

c) y3 ¼ X1y2,

d) y4 ¼ STy3,

e) �w
a ¼ �w

f þ A0y4.

6. Form the matrix product defined by Eq. (92):
X2 ¼ ðIþ R2

1Þ
�1

2XT
1S.

7. Compute the SVD of X2: U2R2V
T
2 ¼ X2.

8. Then evaluate the analyzed ensemble perturbations

from Aa0 ¼ A0V2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I� RT

2R2H
T

q
and add the mean to

arrive at the final analyzed ensemble.

8 Experiments with m		 N

The following experiments were performed to evaluate
the properties of the analysis schemes in the case where
m	 N . An experimental setup, similar to the one used
in the previous section, is adapted. The differences are
the following: now 500 measurements are assimilated in
each step, the error variance of the measurements is set
to 0.5, the number of assimilation steps is five and im-
proved sampling was used for the initial ensemble. The
following six experiments are compared:

Exp. 2: The standard EnKF scheme (Analysis 1) with
perturbation of measurements and a full rank
prescribed R .

Exp. 4: The square root algorithm (Analysis 2 from
Sec. 3) with a full rank prescribed R.

Exp. 5a: The square root algorithm from Appendix A
with a full rank prescribed R.

Exp. 5b: Same as Exp. 5a but with R ¼ Re of rank
N � 1 as defined in Eq. (8). Here, Re is gener-
ated by first sampling E randomly and then
computing Re using Eq. (8).

Exp. 5c: Same as Exp. 5b but with Re constructed from
an E generated using improved sampling.

Exp. 6: The new square root algorithm from Section 7.4,
whereE is used directly withoutR being formed.

In these experiments we assume that we know the
statistics of the measurement errors, i.e. they are uncor-
related with zero mean and the variance set to 0.5. Thus,
the exact diagonal R with the observation error variance
on the diagonal, is easily constructed in the Exps. 2, 4
and 5a. For Exps. 5b, 5c and 6 it is straightforward to
sample normal independent perturbations for each ele-
ment of E with the correct statistics. Note that E is
sampled with rank equal to N � 1. When projected onto
U0 it is not guaranteed that the rank ofUT

0ReU0 orU0E is
equal to N � 1. If E has columns which are orthogonal to

U0; these do not contribute when projected ontoU0. This
corresponds to the assimilation of perfect measurements
and will lead to a corresponding loss of rank in the up-
dated ensemble. We did not experience this to be a
problem in the present experiments, as seen in Fig. 9, but
it may be wise to monitor the rank ofX0 in Eq. (81) when
computing the singular value decomposition.

If the measurement errors are correlated there are
different sampling algorithms which can be used,
including the one described in Evensent (2003).

Both the standard EnKF analysis algorithm and the
square root algorithm from Section 3 worked well in the
previous experiments discussed in Section 6 where C was
of full rank. However, from the previous discussion we
do not expect them to be useful when an R of low rank is
randomly sampled and a large number of measurements
are used. This, in fact, leads to a loss of rank in the
analyzed ensemble as well some singular values in R2

which were slightly larger than 1, and the square root in
Eq. (34) did not always exist. Thus, these algorithms
were used only with the full-rank and exactly specified R.
This problem is eliminated when the more sophisticated
inverse algorithm from Section 7.3 is used.

The time evolution of the residuals and singular
spectra are presented in Figs. 8 and 9. Comparing
Exps. 2 and 4 it is clear that we obtain results which are
similar to those from the previous experiments where
only four measurements were assimilated. Clearly both
of these algorithms are valid for the case when m > N
but, as before the square root algorithm produces more
accurate results than the traditional EnKF scheme.

Exp. 5a produces results which are nearly identical to
those found in Exp. 4, which is expected since the same
equation is solved and only the algorithms differ. This
illustrates that the new inversion algorithm is consistent
and that the rejection of the part of the exactly specifiedR
which is not contained in S does not change the results.

In Exp. 5b we have used R ¼ Re of rank N ) 1 as
input. It is clear that there is no loss of rank in the
analyzed ensemble, although the residuals increase and
are no longer consistent with the predicted standard
deviations. Further, there is no positive impact from
using improved sampling for the perturbations in E as is
seen from Exp. 5c, except for lower spread of the pre-
dicted standard deviations.

The use of a low rank representation forR is valid, and
the results will be the same if UT

0ReU0 ¼ UT
0 RU0. This is

not the case here since random sampling was used for E,
and in particular a diagonal matrix can be difficult to re-
present properly by a low rank random sample. In other
words, if one samples E completely within the space
spanned by U0, the low rank schemes will give the same
result as when a full rank R is used in Exps. 4 and 5a.

In the final Exp. 6 we use the algorithm as defined in
Section 7.4 where we avoid the formation of the full
measurement error covariance matrix. In this case we
obtain results which are almost indentical to the results
from Exps. 5b and 5c where a low rank measurement
error covariance matrix, Re, is used.
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Further examination of these schemes in more rea-
listic settings are clearly required before they are adapted
in operational systems. From the previous theoretical
analysis, the new low-rank square root scheme derived
in Section 7.4, does not introduce any additional
approximations compared to the traditional EnKF

algorithm. It only introduces measures to stabilise the
computation of the analysis and also makes it compu-
tationally much more efficient. However, when a low
rank Re is used, a scheme is required for the proper
sampling of measurement perturbations in S.

9. Discussion

This paper has quantified the impact of using some
improved sampling schemes as well as different analysis

Fig. 8 Time evolution for RMS residuals (dotted lines) and
estimated standard deviations (full lines) for all 50 simulations in
the respective experiments
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algorithms in the EnKF. The improved sampling at-
tempts to generate ensembles with full rank and a con-
ditioning which is better than can be obtained using
random sampling. The improved sampling has been
used for the generation of the initial ensemble as well as
for the sampling of measurement noise.

A new analysis algorithm, which is similar to recently
developed square root algorithms and which completely

avoids the perturbation of measurements, has been de-
rived and examined. It was found to provide superior
results due to the removal of sampling errors which are
introduced by the measurement perturbations in the
standard algorithm.

In the experiments discussed here it was possible to
obtain a significant improvement in the results from
the standard EnKF analysis scheme if improved sam-
pling is used both for the initial ensemble and the
measurement perturbations. These results were nearly
as good as those obtained using the square root algo-

Fig. 9 Time evolution of the ensemble singular value spectra for
some of the experiments
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rithm together with improved sampling of the initial
ensemble. It is expected that similar improvements can
be obtained in general since the improved sampling
provides a better representation of the ensemble error
covariances and of the space where the solution is
sought.

A comprehensive analysis was devoted to the use of
low-rank representations of the measurement error
covariance matrix and it was possible to derive compu-
tationally efficient variants of the square root algorithm
which exploits that the solution is searched for in a space
spanned by the forecast ensemble members. This re-
sulted in a scheme presented in Section 7.4, where a low-
rank representation can be used for the measurement
error covariance matrix. This algorithm solves the full
problem, and turns out to be extremely efficient, and
computationally more stable, compared to the tradi-
tional EnKF algorithm.

Additional experiments were performed to examine
the new analysis schemes when used with a large number
of measurements and low-rank representations for the
measurement error covariance matrix. It was shown
both theoretically and from experiments that this is does
not introduce additional errors or approximations in the
analysis.

It is important to point out that these results may not
be directly transferable to other more complex dynamical
models. In the cases discussed here the dimension of the
state vector (1001 grid cells) is small compared to typical
applications with ocean and atmospheric models. Thus,
although we expect that the use of improved sampling
schemes and/or an analysis scheme without perturbation
of measurements will always lead to an improvement in
the results, it is not possible to quantify this improvement
in general.

We have not at all examined the potential impact a
non-linear model will have on the ensemble evolution.
The use of non-linear models will change the basis from
that of the initial ensemble, and may even reduce the
rank of the ensemble. This suggests that the improved
sampling should be used for the model noise as well, to
help maintain the conditioning of the ensemble during
the forward integration.
The following recommendations can be given:

1. The use of high-order sampling should always be used
both for the initial ensemble and the sampling of
model errors.

2. The square root algorithm was superior in all exper-
iments and a version of it should be used for the
computation of the analysis.

3. The low-rank square root algorithm from Section 7.4
is computationally stable and efficient and should be
used as the default algorithm. It will work properly
also in the case when m � N .

It has been shown that the use of a full-rank R does
not lead to any improvement in the results compared
to what is obtained using low-rank approximations

Re ¼ UT
0RU0. When an ensemble representation is

used to represent Re, the ensemble of measurement
perturbations needs to span the full space S and
needs to represent UT

0RU0 exactly to get the same
result.

In summary, this paper has evaluated the various
sampling strategies in combination with the different
analysis schemes, using a very simple linear advection
model. The experiments have shown that there is a po-
tential for either a significant reduction of the computing
time or an improvement of the EnKF results, using the
improved sampling schemes together with the square
root analysis algorithm. Further, a theoretical analysis
has shown that the analysis can also be computed very
efficiently using a low rank representation of the
measurement error covariance matrix. Thus the new
algorithm is an improvement over the algorithm from
Evensen (2003) which shows the rank-loss problem
found by Kepert (2004).

Appendix A Inversion and square root analysis
with full-rank R

This case is presented since it allows for implementation
of the square root analysis scheme in existing assimila-
tion systems where R is already given.

A.1 Pseudo-inverse of C

We use the expression for C as given in Eq. (73), i.e.

C � U0R0ðIþ ðN � 1ÞRþ0 UT
0RU0R

þT
0 ÞRT

0U
T
0 ð94Þ

¼ U0R0ðIþ X0ÞRT
0U

T
0 ; ð95Þ

where we have defined

X0 ¼ ðN � 1ÞRþ0 UT
0RU0R

þT
0 ð96Þ

which is an N � N matrix of with rank equal to N � 1
and it requires m2N þ mN2 þ mN floating point opera-
tions to form it.

We then proceed with an eigenvalue decomposition

ZKZT ¼ X0; ð97Þ
where all matrices are N � N , and insert this in Eq. (95)
to obtain

C ¼ U0R0ðIþ ZKZTÞRT
0U

T
0 ð98Þ

¼ U0R0ZðIþ KÞZTRT
0U

T
0 : ð99Þ

Now the pseudo-inverse of C becomes

Cþ ¼ ðU0R
þT
0 ZÞðIþ KÞ�1ðU0R

þT
0 ZÞT ð100Þ

¼ X1ðIþ KÞ�1XT
1 ; ð101Þ

where we have defined X1 2 <m�N of rank N � 1 as

X1 ¼ U0R
þT
0 Z: ð102Þ
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A.2 Square root analysis algorithm

The following algorithm is an extended version of the
previous square root algorithm which exploits that the
solution is searched for in the space with dimension
equal to the number of ensemble members. This suggests
that it should not be necessary to invert an m� m ma-
trix, to compute the analysis, when m > N .

Using the expression (101) for the inverse we obtain
the following derivation of the analysis scheme

Aa0Aa0T ¼ A0ðI� STCþSÞA0T ð103Þ

¼ A0ðI� STX1ðIþ KÞ�1XT
1SÞA0T ð104Þ

¼ A0ðI�½ðIþKÞ�
1
2XT

1S�
T½ðIþ KÞ�

1
2XT

1S�ÞA0T ð105Þ

¼ A0ðI� XT
2X2ÞA0T; ð106Þ

where we have defined X2 as

X2 ¼ ðIþ KÞ�
1
2XT

1S ¼ ðIþ KÞ�
1
2ZT~IN�1V

T
0 ; ð107Þ

which also has rank equal to N � 1. We then end up with
the same final update equation (34) by following the
derivation defined in Eqs. (29–33). Thus, here we com-
pute the factorization of an N � N matrix, but we still
need to evaluate one expensive matrix multiplication
involving the m� m matrix R in Eq. (96).

Appendix B Final update equation in the square root
algorithms

In Evensen (2003) it was shown that the EnKF analysis
update can be written as

Aa ¼ AfX; ð108Þ
where X is an N � N matrix of coefficients. The square
root schemes presented in this paper can also be written
in the same simple form.

This is illustrated using the algorithm from Section 3,
where the analysis is written as the updated ensemble
mean plus the updated ensemble perturbations,

Aa ¼ �A
a þ Aa0: ð109Þ

The updated mean can, using Eq. (23), be written as

A
a ¼ A

f þ Af0STC�1ðD�HA
fÞ ð110Þ

¼ Af1N þ AfðI� 1N ÞSTC�1ðD�HAfÞ1N ; ð111Þ
and the updated perturbations are, from Eq. (34),

Aa0 ¼ Af0V2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I� RT

2R2

q
ð112Þ

¼ AfðI� 1N ÞV2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I� RT

2R2H
T

q
: ð113Þ

Combining the previous equations we get (108) with X
defined as

X ¼1N þ ðI� 1N ÞSTC�1ðD�HAfÞ1N

þ ðI� 1N ÞV2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I� RT

2R2H
T

q
: ð114Þ

Thus, we still search for the solution as a combination of
ensemble members as was discussed in Evensen (2003).
It also turns out that forming X and then computing the
matrix multiplication in Eq. (108) is the most efficient
algorithm for computing the analysis when many mea-
surements are used.
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