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ABSTRACT

The ring-shedding process in the Agulhas Current is studied using the ensemble Kalman filter to assimilate
Geosat altimeter data into a two-layer quasigeostrophic ocean model. The properties of the ensemble Kalman
filter are further explored with focus on the analysis scheme and the use of gridded data. The Geosat data consist
of 10 fields of gridded sea surface height anomalies separated 10 days apart that are added to a climatic mean
field. This corresponds to a huge number of data values, and a data reduction scheme must be applied to increase
the efficiency of the analysis procedure. Further, it is illustrated how one can resolve the rank problem occurring

when a too large dataset or a small ensemble is used.

1. Introduction

The Agulhas Current is a western boundary current
flowing along the east coast of South Africa. Its water
originates from the Mozambique channel (see, e.g.,
Setre and da Silva 1984 ) and from east of Madagascar
(e.g., Lutjeharms et al. 1981) as part of the subtropical
gyre in the Indian Ocean. After the Agulhas reaches the
tip of the continent, it makes a large anticyclonic turn
and flows back east into the southern Indian Ocean as
the Agulhas Return Current. At the turning point, the
so-called retroflection area, large anticyclonic eddies
are formed that travel into the South Atlantic Gcean
(Lutjeharms and Gordon 1987; Lutjeharms and van
Bailegooyen 1988; Gordon and Haxby 1990; Wakker
et al. 1990; Feron et al. 1992; and Van Ballegooyen et
al. 1994). These eddies are the largest in the whole
ocean and are believed to play a significant role in the
general thermohaline circulation (De Ruijter 1982;
Gordon 1986; Gordon et al. 1992). Several studies
have estimated the magnitude of the transport and the
number of eddies that are shed. Using satellite thermal
infrared imagery, Lutjeharms and van Ballegooyen
(1988) found that six to nine large eddies containing
warm water were shed annually from the Agulhas Ret-
roflection, while Feron et al. (1992) observed stronger
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variability with four to eight eddies a year from an al-
timetric analysis.

The mechanism of ring shedding is still under in-
vestigation. The anticyclonic turn of the Agulhas can
be explained theoretically by the conservation of po-
tential vorticity, including the planetary vorticity (Ou
and De Ruijter 1986; De Ruijter and Boudra 1985). In
Lutjeharms and van Ballegooyen (1984) a barotropic-
free inertial jet model was used to study the area. They
found that a relatively low volume transport of the
Agulhas resulted in a more westward penetration of the
current, and vice versa. However, it turned out that their
calculated path depended strongly on the bottom ve-
locity, which seems to be in contrast with the more
persistent flow patterns observed.

In De Ruijter and Boudra (1985) and Boudra and
De Ruijter (1986), experiments were conducted with
a barotropic and a multilayer isopycnic model, respec-
tively, to investigate the Atlantic—Indian Ocean circu-
lation. The studies concentrated on the influence of ex-
ternal parameters on the retroflection mechanism and
the interbasin circulation. They showed that the posi-
tion of the zero of the wind stress curl is important for
the amount of leakage from the Indian to the Atlantic
Ocean. They found only regular ring formation in the
multilayer model when the Agulhas was unrealistically
weak. Boudra and Chassignet (1988) and Chassignet
and Boudra (1988) also used a multilayer isopycnic
model and found regular ring formation with a more
realistic Agulhas strength and a more realistic shape of
South Africa. The rings were shed along the east coast
of the continent, while the observations indicated a
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shedding south of the continent. The same ring-shed-
ding position was found with the Fine Resolution Ant-
arctic Model (FRAM).

A reduced gravity model was used by Ou and De
Ruijter (1986). The separation of an inertial boundary
current from a curved coastline was studied. Aside
from the volume transport of the current, the curvature
and the angle of separation associated with it (mea-
sured clockwise from the south) were found to be crit-
ical parameters. A larger volume transport resulted in
a separation at a less negative latitude, which increased
the generation of anticyclonic vorticity and a sharper
eastward turn at a higher latitude. A low volume trans-
port can even cause the current to round the continent.
The jet can intersect itself if the angle of separation is
large enough, which corresponds to a separation at a
more negative latitude. The model is able to predict
intersections and thus ring formations for parameter
values corresponding to the Agulhas. Their study
shows that the Agulhas is strong enough to make the
anticyclonic turn and flow back in the Indian Ocean,
but at the same time it is weak enough to allow for
intersection on itself, thus producing large anticyclonic
rings.

To study the details of the ring-shedding process,
data assimilation can be used. Holland et al. (1991)
used a five-layer quasigeostrophic model in which they
assimilated Geosat altimeter data. They concentrated
on the characteristics of two different assimilation
methods, nudging and reinitialization, and not on the
physics of the system. In this paper the ring-shedding
process is studied using the ensemble Kalman filter in-
troduced by Evensen (1994b) (see also the examples
in Evensen 1994a) to assimilate gridded Geosat altim-
eter data from the Agulhas Current into a two-layer
quasigeostrophic ocean model.

The main difference between the ensemble Kalman
filter and the extended Kalman filter is the way the
forecast error statistics is calculated. The extended Kal-
man filter integrates an approximate equation for the
error covariance matrix where all higher-order statis-
tical moments are neglected. This linearization has
proven to be inconsistent for strongly nonlinear dynam-
ics, and it will in many cases be a too simplified closure
approximation (see Evensen 1992; Miller et al. 1994).
The ensemble Kalman filter integrates an ensemble of
model states from which the error covariances can be
calculated. This is equivalent to a Monte Carlo method
for integrating Kolmogorov’s equation, which is the
fundamental equation for evolution of error statistics.
No closure approximations or linearizations have been
applied, and the error evolution is exact to numerical
truncation errors in the limit of an infinite size of the
ensemble, given that the initial error distribution is ex-
act and model errors are Gaussian.

The quasigeostrophic model (see the appendix ) will
probably not give a very accurate description of the
dynamics in the Agulhas retroflection region. However,
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the model includes the most dominant physics such as
barotropic and baroclinic instabilities, the topographic
influence, and the planetary g8 effect, which are pro-
cesses that play a key role for the eddy shedding and
meander growth in the Agulhas current. Further, the
model is nonlinear and therefore makes the advanced
data assimilation problem very challenging. This work
presents a first attempt of performing an advanced data
assimilation experiment where the ensemble Kalman
filter is used to assimilate real data.

An overview of the Geosat dataset is given in the
next section; then in section 3, the fundamentals of the
ensemble Kalman filter including its analysis procedure
and a data reduction scheme is discussed. Results from
a pure model and ensemble forecast are given in sec-
tions 4 and 5. Finally the data assimilation experiments
are presented in section 6, followed by discussions in
section 7. ’

2. Geosat data

The Geosat data consist of 10 gridded fields of sea
surface height anomalies separated 10 days apart. The
data have been subject to standard corrections; for ex-
ample, the sea level changes attributable to tides and
static response to atmospheric pressure are removed,
the geoid signal is eliminated, and corrections for orbit
errors are applied [see Holland et al. (1991) for a de-
tailed discussion of the data]. The sea surface height
anomalies are added to climatic mean fields from the
Southern Ocean Atlas of Gordon (1982) and the re-
sulting fields are interpolated to the numerical grid
where Ax = Ay = 22 km. Errors in the sea surface
height are estimated to be 10 cm compared to the strong
signal that is of the order 100 cm in the Agulhas region.
The strong signal in the altimeter data for this particular
region makes it an appealing test site for altimeter data
assimilation experiments. The altimetric data field at T
= 0 is used as an initial condition for the model and is
given in Fig. 1, while another six data fields are plotted
in Fig. 2. The data contain a well-identified Agulhas
current flowing along the South African coast before it
separates from the coast, retroflects, and leaves the re-
gion at the eastern boundary. Part of the circumpolar
current can also be seen in the data. Note the eddy

“located at 39.5°S, 18.0°E at day 30, which 10 days later

has been shed from the Agulhas Current and has left
the model domain. This will be further discussed in
connection with the model integrations and data assim-
ilation experiments.

3. Ensemble Kalman filter

The ensemble Kalman filter (EnKF) is based on the
theory of stochastic dynamic prediction that describes
the evolution of error statistics. This theory was first
introduced by Epstein (1969), and several publications
have later extended it (see, e.g., Gleeson 1970; Fleming
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FiG. 1. Initial upper and lower streamfunction fields with contour
interval 0.35. The upper-layer field is the altimetric data field at T'
= 0, and in the lower layer this field is scaled down with a factor 0.4.
The bathymetry is given with a contour interval of 540 m, and the
initial error variance field has a contour interval of 0.0025.

1971a,b; Epstein and Pitcher 1972; Leith 1971, 1974;
Pitcher 1977; Salmon et al. 1976; and Seidman 1981).
These publications discuss both the use of Monte Carlo
methods, which form the basis for the error prediction
in the EnKF, and the use of approximate stochastic dy-
namic prediction on which the extended Kalman filter
1s based.

a. Error prediction

it is worthwhile to briefly review the basics of pre-
dictability theory since advanced data assimilation
methods are built directly on these concepts. The state
vector at a specified time, ¢, can be represented by a
single point in an n-dimensional phase space ?. Thus,
time evolution of the state vector ¢ is described by
continuous motion of the point along a trajectory in
phase space. The uncertainty in the state vector can be
represented by a large ensemble of possible states, each
assigned an individual probability number. Suppose
there are N points altogether, where N is a very large
number, and dN is their density (points per volume
increment) at any location. As the number of such
phase points approaches infinity, one can define a prob-
ability density function-

dN
() = N

(D)
which can vary throughout the space. In Evensen
(1994b) it was shown that the QG model could be writ-
ten in discrete form as an Itd stochastic differential
equation describing a Markov process

dy = g(¢, t)dt + dq, (2)
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where s is the state vector, g is a nonlinear vector func-
tion, and dg € R” is assumed to be a vector of random
noise that is white in time and has a multivariate Gauss-
ian distribution with zero mean in the spatial coordi-
nates. The evolution of the probability density for this
equation is described by the Kolmogorov’s equation
which for the QG model simplifies to

% < 0 _ & O 0%
ot +;Z;g" ol Z 5 op; op;

where @ = gq” is the covariance matrix for the model
errors. A derivation of this equation, which is the fun-
damental equation for evolution of error statistics, can
be found in Jazwinski (1970). The probability density
function represents the density of an infinite ensemble
of possible ocean states, each having an associated
probability number. The width of the probability den-
sity function corresponds to the variance of the ensem-
ble and represents the errors in the predicted solution.
Note that the stochastic forcing introduces a diffusion
term that tends to flatten the probability density func-
tion (spreading the ensemble) during the integration,
that is, the probability decreases and the errors increase.

If this equation could be solved for the probability
density function, it would be possible to calculate sta-
tistical moments like the mean state and the error co-
variances at different time levels. In the extended Kal-

(3)
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FiG. 2. Geosat altimeter data for the first 60 days
with contour interval of 0.35.
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man filter, equations for the moments of ¢ can be de-
rived from Kolmogorov’s Eq. (3). For linear dynamics
these equations are uncoupled, and if the initial prob-
ability density is Gaussian, that is, given by the mean
and the covariance, it will remain so for all times. This
is the reason why the Kalman filter for linear models
is the optimal sequential data assimilation method; that
is, an exact equation is used for the evolution of the
€ITOr covariance matrix.

For a nonlinear model, the mean and the covariance
matrix will not in general characterize ¢(¥, r), because
the hierarchy of equations for the different statistical
moments are coupled, and even if the initial distribution
is Gaussian, it will not remain so. However, the mean
and the covariance matrix do determine the mean path
and the dispersion about that path. In the extended Kal-
man filter the coupling to the higher-order moments is
removed by the crude closure assumption that their
contribution can be neglected. :

An alternative method for predicting error statistics
is to solve Kolmogorov’s Eq. (3) using Monte Carlo
methods. A large cloud of ocean states, that is, points
in phase space, can be used to represent a specific prob-
ability density function. By integrating such an ensem-
ble of states forward in time it is easy to calculate ap-
proximate estimates. for moments of the probability
density function at different time levels. In this context
the Monte Carlo method might be considered a particle
method in phase space. When the size N of the ensem-
ble increases, the errors in the solution for the proba-
bility density will approach zero at a rate proportional
to N™'"2. For practical ensemble sizes, say O(100), the
errors will be dominated by statistical noise, not by
closure problems or unbounded error variance growth
as have been observed in the extended Kalman filter
(see Evensen 1992, 1994b).

When the Monte Carlo method is applied one first
calculates a best-guess initial condition based on avail-
able information from data and statistics. The model

solution calculated from this initial state is denoted the

central forecast. The uncertainty in the best-guess ini-
tial condition is represented by the initial variance. An
ensemble of initial states is then generated where the
mean equals the best-guess initial condition, and the
variance is specified based on knowledge of the uncer-
tainty in the first-guess initial state. The covariance or
smoothness of the ensemble members should reflect the
true scales of the system; for example, the internal
Rossby radius is the physical scale for a quasigeo-
strophic model. A procedure for generating such pseu-
dorandom fields with a specified variance and covari-
ance was outlined in Evensen (1994b).

The effect of external error growth must be included
to give reliable estimates for the evolution of errors. If
these errors were known, their effect could be included
by integrating each ensemble member as a stochastic
differential equation where the stochastic forcing fields
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are drawn from an ensemble having the correct model
error probability distribution.

b. Analysis procedure

In Evensen (1994b) an analysis scheme was pro-
posed where the traditional update equation used in the
Kalman filter is applied, except that the gain is calcu-
lated from the error covariances provided by the en-
semble. It was also illustrated that a new ensemble with
error statistics representing the analyzed state could be
generated by updating each ensemble member individ-
ually using the same analysis equation.

Traditionally the analysis in the Kalman filter is cal-
culated from

¥ = ¢l + K(d, — Hay)), (4)
where the measurement equation is defined as
d, = Hyl + € (5)

and relates the data linearly to the true state through
the measurement matrix H,. The errors in the data ¢,
are assumed white in time and with an error covariance
matrix W, = €.€/. The optimal variance-minimizing
weights are given by the Kalman gain

K, = P/H(H,P/H] + W)~ (6)

This analysis procedure can be characterized as the
optimal variance-minimizing method. An inherent as-
sumption is that the error statistics are Gaussian with
vanishing higher-order statistical moments. This is in
general not true for nonlinear dynamics where the prob-
ability density function may be far from Gaussian and
higher-order moments may contribute significantly
(see Miller 1994 for an example). An optimal-analysis
procedure would be to calculate the probability density
function from the ensemble and then calculate the most
probable state using Bayes theorem. However, the
computational load is at present extreme for higher-
dimensional problems and such methods have been ap-
plied only with good results for low-dimensional prob-
lems (E. F. Carter and R. N. Miller 1994, personal com-
maunication).

An ensemble of ocean states can be stored in the
matrix A", where n is the number of state variables
for each ensemble member and N is the number of en-
semble members. Given the ensemble forecast A{, one
can calculate the error covariance matrix for the ensem-
ble from

- M) (Al -MD)T
N-1 >

pr (A

7

where M/ contains the predicted ensemble mean in
each column. This means that the rank of the error co-
variance matrix P{ will be less than or equal to the
number of members in the ensemble. The rank of the
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so-called representer matrix R, = H,P/H! will be the
least of the rank of P/ and the rank of H,.

This has a serious implication for applications where
the number of data are greater than the ensemble size,
which makes the representer matrix R, singular. Add-
ing the measurement error covariance matrix increases
the rank for the matrix to be inverted in (6), but there
is still no guarantee that the system becomes well con-
ditioned.

However, there are ways of resolving this rank prob-
lem. Note that the covariance functions calculated from
the ensemble will still give a good estimate of the actual
covariance functions, and the addition of even further
ensemble members will only help reducing the statis-

tical noise. It is convenient to rewrite the analysis (4)

as

¥t =l + Bb, (8)

with B, = HkP{ , where the rows in By are influence
functions or so-called representers for each of the mea-
surements. The vector b, contains amplitudes for each
of the influence functions and is found by solving the
system

Note that it is not necessary to calculate the full error
covariance matrix to compute the analyzed estimate
from (8) and (9). The influence functions are found
from

_HJ(A] - M)A - M7
a N-1 ’

where the m X N matrix S = Hk(A{ —ha/ ) is calculated
first, where m is the number of measurements. The in-
fluence functions are then found from B, = S(A,{
~ M{)"(N ~ 1)"". The representer matrix B can be
calculated from R, = HP/H] = HB] = 88"(W
— 1)"'. The coefficients b, can now be solved for in
(9) if the matrix R, + W, is nonsingular.

A data reduction scheme is often required for prac-
tical applications when gridded data are used. If the
gridded data are applied directly that requires the in-
version of a huge matrix with order equal to the number
of grid points in the gridded data fields. The condition-
ing of this matrix will also be poor due to the correla-
tion between neighboring grid points. In the cases be-
low data values from every third grid point are used.
This reduces the dimension of the system (9) with a
factor of 1/9, and a total of 297 data points are used in
each analysis. The distance between the data points be-
comes about 66 km. Subsampling the data also im-
proves the conditioning of (9), due to the lower cor-
relation between the applied neighboring data points.
It is also expected that such subsampling yields only
minor differences in the results since the unused data
contain only additional information about small-scale
structures in the data fields.

B, (10)
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By using an eigenvalue decomposition when solving
(9) and discarding the contribution to b, from the noisy
eigenvectors corresponding to the least significant ei-
genvalues, it is possible to eliminate the noise resulting
from the poor conditioning. Here 130 to 140 eigenval-
ues, accounting for about 95% of the variance, were
used in the analyses. This corresponds to finding the
Moore—Penrose inverse solution of (9) after a formal
reduction of the rank of the system (Bennett 1992).

This approach does in fact resolve the conditioning
problem caused by dependent measurements, and it is
also possible to have a larger number of measurements
than ensemble members, which results in a rank prob-
lem. The analysis will be well posed even with a very
small ensemble when only the contribution from non-
zero eigenvalues is used. However, the accuracy of the
analysis is still determined by the size of the ensemble,
For an extensive discussion of this procedure, see Ben-
nett (1992, chapter 6), where it was used to resolve the
poor conditioning caused by linearly dependent obser-
vations.

An ensemble with the correct analyzed error statis-
tics must be calculated during each analysis. In Even-
sen (1994b) it was shown that if the same gain is used
to update each individual member of the ensemble, the
resulting ensemble will have the correct error statistics.
In the alternative analysis procedure given above, this
corresponds to solving (9) for each ensemble member,
that is, each ensemble member results in a new
right-hand side, and thus a new By, and the analysis is
then calculated for each individual ensemble member
using (8).

4. Model forecast

First a pure model forecast will be generated and
compared with the data. This will provide some infor-
mation about the properties of the model, and it is also
important to verify if the model is at all valid for this
region. The same initial streamfunction is used for all
experiments, where the upper-layer streamfunction is
given by the first of the 10 gridded data fields and the
lower-layer sireamfunction is the same as the upper
layer but scaled down by a factor 0.4. These initial
fields are shown in Fig. 1 together with the initial vari-
ance of the ensemble and the bathymetry.

The upper- and lower-layer streamfunction from the
pure model run with no assimilation of data are shown
in Figs. 3 and 4. During the first part of the integration
the model solution compares well with the gridded
data; that is, the forecast generated by the model looks
reasonable compared to the typical structures seen in
the gridded data (compare Figs. 2 and 3).

However, after about two months of integration a
strong instability develops in the Agulhas Current
along the continent. This instability can be understood
as follows. The quasigeostrophic model conserves po-
tential vorticity. As the water flows along the east coast
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FiG. 3. Model forecast with no assimilation. The upper-layer
streamfunction is given with a contour interval of 0.35.

of South Africa, it gains planetary vorticity and loses
relative vorticity. This relative vorticity is in a real sit-
uation dissipated in the boundary layer along the coast.
However, the model has a free-slip boundary, so the
- velocity gradients are smaller and this dissipation is less
strong. Consequently, when this water reaches the de-
tachment point it has accumulated a large negative rel-
ative vorticity, which results in the formation of a cir-
culation cell centered at 36.5°S, 20.5°E. Note that the
reason for the retroflection is the gain in relative vor-
ticity after detachment (see the introduction). In the
model run the current gains extra relative vorticity due
to the free-slip condition before detachment. This re-
sults in a faster turn immediately after detachment in
the pure model run. Water entrained on the eastward
side of the main current also has a negative relative
vorticity when it reaches the turn in the coastline at
34.5°S, 25.0°E. Indeed, a strong eddy forms, which
eventually distorts the main current. At day 60 this
eddy even attracts water from the Agulhas Return Cur-
rent, thus enhancing and disturbing the Agulhas Cur-
rent even more.

Note also that the detachment of the ring located at
40.0°S, 18.0°E at day 20 is slower in the model forecast
than in the data (compare Figs. 2 and 3). The ring is
shed and escapes the region between day 30 and day
40 in the data, while in the model forecast it escapes
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the region between day 40 and day 50. This feature is
consistent with comparisons of quasigeostrophic and
primitive equation models for instabilities of eastward-
flowing jets. In a quasigeostrophic model the instabil-
ities of the jet grow faster, but the final wave steepening
and ring shedding is slower compared to a more real-
istic primitive equation model. This is because the hor-
izontal scales become so small during the wave steep-
ening that ageostrophic effects are important, Another
interesting feature is the barotropization of the Agulhas
ring just after its detachment (see Fig. 4). This is in
agreement with observations of Agulhas Rings (e.g.,
Gordon and Haxby 1990).

The model-predicted fields contain stronger vari-
ability than the data, which may be a result of a too
strong smoothing of the altimeter data during the in-
terpolation to the numerical grid. It is hoped that the
data will be able to constrain the major flow pattern,
while the model will regenerate some smaller-scale
structures in the data assimilation experiments to be
discussed below.

5. Ensemble forecast

Before the data assimilation experiments are per-
formed it is instructive to examine the statistics pro-
duced by a pure ensemble integration. The error statis-
tics provided by an ensemble integration will, if the
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FiG. 4. Model forecast with no assimilation. The lower-layer
streamfunction is given with a contour interval of 0.35.
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in the pure ensemble integration case.

model is realistic enough, be valid for very long inte-
gration times compared to the error covariance evolu-
tion in the extended Kalman filter. The dynamical in-
stabilities are saturated in the ensemble integration,
while those in the integration of the error covariance
equation are allowed to have unbounded growth due to
the statistical linearization or closure applied (Evensen
1994b). If realistic system noise is included, the vari-
ance of the ensemble provides an estimate of the errors
in the model forecast.

Here an ensemble of 500 members is used, and the
initial error variance field for the upper and lower
layer is given in Fig. 1. Further, the system noise is
neglected to examine the sole properties of the inter-
nal dynamical instabilities. The time evolution of the
mean square errors is given in Fig. 5. The mean
square errors grow nearly exponentially during this
90-day integration. This is a too short integration
time for the error growth to saturate, in fact, it may
not saturate at all, because it has not been ensured
that the approximate open boundary scheme con-
serves energy (Evensen 1993).

The model forecast, the mean, and the error variance
are given in Fig. 6 at the final day. The mean solution
is smoother than the pure model forecast but it siill
contains eddies and meanders of similar structures and
at approximately the same locations as in the pure
model forecast. The strongest error growth is located
in the region close to the South African land boundary.
In this area nonlinear instabilities can extract energy
from the strong Agulhas current, and this is also the
most eddy active region in the model solutions. If a
measurement antenna is to be designed for this region,
it is obvious that the largest number of measurements
should be taken from the areas with largest error vari-
ance, at least if one searches for a low-variance estimate
of the ocean state.
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6. Data assimilation experiments

The error-covariance statistics for the data is speci-
fied using a correlation model

. b
cov(x,, %) = e(x)e(%s) exp(— ”ﬁﬁxi”z-) L (11)

d

where the horizontal decorrelation length is r, = 3.0
and the error variance is e?(x) = 0.02 in the interior
of the model domain, but with errors decreasing to zero
approaching the coastal boundary (see Fig. 1). Since
the initial data field is used to initialize the model, the
same parameters are used for the initial error statistics.
A vertical decorrelation equal to exp(—0.3) is imposed
between layer 1 and 2 for the initial error statistics.
We will not give an elaborate discussion on how to
specify the correct model errors, but rather argue for a
crude inclusion of the model errors in this experiment.
Even if the model errors are unknown, they should be
represenied in some way, and here normal distributed
model errors with zero mean and a specified covariance
are assumed. The correlation model (11) was used with
the same decorrelation length r, = 3.0 but with a much
lower variance e?(x) = 0.0005. This low variance en-
sures that the main contribution to the error covariance
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FiG. 6. Results from the pure ensemble integration at day 90. The
contour interval for the variance plots (bottom) is 0.1, while it is
0.0025 for all other variance plots in this paper.
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evolution is still from the dynamical evolution. As a
cheaper alternative to integrating each ensemble mem-
ber properly as a stochastic differential equation, we'
have for now chosen to add pseudo random fields
drawn from a distribution having the prescribed error
statistics to each ensemble member every eighth time
step, which corresponds to the characteristic time At
= 1.0 for the dynamics. In doing this a component of
random walk in phase space is included, which will
increase the variance of the ensemble. ;

Now an experiment using the full ensemble Kalman
filter is performed with an ensemble size of 500. A time
series of the analyzed estimates for the upper and lower
layer is given in Figs. 7 and 8. From these plots it is
first of all evident that the streamfunction estimates are
similar to the data and contain the major structures ob-
served by the data. The Agulhas Current is clearly less
unstable than what was found in the pure model fore-
cast. Note the eddy formed just below the southern tip
of South Africa in Figs. 8 and 9. It is not visible in the
data, so it is an essential feature of the ensemble of
model runs; it was also observed in the mean of the
ensemble. However, maybe the formulation of the
model poses the problem. Because of the overestima-
tion of depth changes in quasigeostrophic models, a
depth-influence reduction of 90% was applied. In re-
ality the depth of the lower layer is zero at this location,
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FiG. 8. EnKF case. The lower-layer streamfunction after analysis.

which maybe would prevent this eddy from being
formed.

Let us now concentrate on the shedding of the Agulhas

Rings. If we compare the EnKF results with the pure

o
LA e et e M e S S e e e
15 20 25 30

25

30

FiG. 9. EnKF case. (Top) The predicted upper- and lower-layer
treamfunction estimates before the final analysis at day 90. (Bottom)

The streamfunction estimates after the final analysis.
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FiG. 10. EnKF case. (Top) The predicted upper- and lower-layer
error variances before the final analysis at day 90. ( Bottom) The error
variances after the final analysis.

model forecast and the data, it can be observed that the
ring is formed faster in the EnKF experiment than in the
model prediction, and in more agreement with the data.
The too slow final wave steepening and ring shedding in
the quasigeostrophic model, which is caused by the lack
of ageostrophic effects in the quasigeostrophic model, is
here accounted for by the assimilation of the data, which
of course contain these ageostrophic effects. It is inter-
esting to see that the lower layer does not show this dif-
ference in ring-formation speed.

Another difference between the model forecast and
the EnKF experiment is the fact that the Agulhas ring
formed in the former is stronger than in the EnKF ex-
periment. This can be seen in both layers. In the lower
layer, also the horizontal extension of the ring during
formation is larger in the model forecast.

Finally, a difference in the position of the neck re-
gion, the region where the ring is still connected with
the Agulhas Current, can be observed. This effect is
more visible in the lower layers. From Fig. 4, the model
forecast, the neck region is centered at about 39.0°S,
20.0°E. In Fig. 8, the EnKF experiment, the neck region
is centered at 40.5°S, 19.0°E. The difference is about
180 km. Especially the northern rim of the neck region
seems to be active in the ring-shedding event. This can
be expected because a westward-flowing jet is more
unstable than an eastward-flowing jet. The model fore-
cast seems to attribute significance for ring shedding to
both northern and southern rims of the neck region.
Maybe part of this can be explained by the stronger
ring in the model forecast, which entrains water north-
ward in the neck region. Another reason can be that
Rossby wave growth is faster in quasigeostrophic mod-
els than in primitive equation models; ageostrophic mo-
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tions tend to slow down meander growth in the Agulhas
Return Current (e.g., Spall and Robinson 1990).

In Fig. 9 the model prediction before the final anal-
ysis (top) can be compared to the analyzed estimate.
First of all it is clear that the model solution does not
deviate significantly in the 10-day period between as-
similation. The main effect of the analysis is here to
damp some structures that have barely started to grow.
Note, for example, the damping of the eddies at 35.5°S,
21.5°E and 35.5°S, 26.0°E both in both the upper and
lower layer.

If one examines the variance plots for the corre-
sponding forecast and analysis given in Fig. 10, the
error growth is again strongest in the Agulhas Current
near the coastal boundary. After an analysis, the error
variances, contained in the second row of Fig. 10, are
rather uniform over the domain and with amplitudes
only a fraction of the original variances in the data.
The evolution of the mean square errors are given in
Fig. 11.

To conclude, some effects of the data assimilation in
the quasigeostrophic model seem to be to include ageo-
strophic effects contained in the data into the vorticity
evolution. Hence, as can be expected, the quasigeostro-
phic model does not contain all the physics involved.
It is also clear that such influence of the data is not
possible in a strong-constraint inverse formulation
where the model is not allowed to contain errors. It
should be noted that primitive equation models alone
do not give results consistent with the data for the ring-
shedding process. The primitive equation experiments
done so far (see the introduction) show ring shedding
in the wrong position, along the coast of South Africa.

7. Discussion

Here fields of gridded Geosat data, separated 10 days
apart, were used in a data assimilation experiment to
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FiG. 11. Time evolution of mean square errors in the EnKF case.






