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ABSTRACT

Advanced data assimilation methods become extremely complicated and challenging when used with strongly
nonlinear models. Several previous works have reported various problems when applying existing popular data
assimilation techniques with strongly nonlinear dynamics. Common for these techniques is that they can all be
considered as extensions to methods that have proved to work well with linear dynamics.

This paper examines the properties of three advanced data assimilation methods when used with the highly
nonlinear Lorenz equations. The ensemble Kalman filter is used for sequential data assimilation and the recently
proposed ensemble smoother method and a gradient descent method are used to minimize two different weak
constraint formulations.

The problems associated with the use of an approximate tangent linear model when solving the Euler–Lagrange
equations, or when the extended Kalman filter is used, are eliminated when using these methods. All three
methods give reasonable consistent results with the data coverage and quality of measurements that are used
here and overcome the traditional problems reported in many of the previous papers involving data assimilation
with highly nonlinear dynamics.

1. Introduction

The celebrated Lorenz model has been the subject of
extensive studies motivated by its chaotic and strongly
nonlinear nature. In the field of data assimilation, the
model has served as a testbed for examining the prop-
erties of various data assimilation methods when used
with strongly nonlinear dynamics. The results have been
used to suggest properties and possibilities of the meth-
ods for applications with oceanic and atmospheric mod-
els that may also be strongly nonlinear and chaotic.

In Gauthier (1992) the so-called adjoint method,
which solves a variational minimization problem where
the model acts as a strong constraint, was tested with
the Lorenz model. It was found that in a case where the
model did not undergo a transition, the cost function
was relatively well behaved with respect to perturba-
tions in the control variables—that is, the initial con-
ditions for the three model variables. However, in a case
where the model did undergo transitions a very strong
sensitivity of the cost function with respect to pertur-
bations in the initial conditions was observed—that is,
the value of the cost function depended strongly and
nonlinearly on the control variables and contained local
minima.
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Miller et al. (1994) reexamined the adjoint method
with the Lorenz model and proved that this behavior of
the cost function was strongly dependent on the length
of the assimilation time interval. Gauthier (1992) pre-
sented an example with observations in the time interval
t ∈ [0, T] with T 5 8, and two cases were compared,
one with and one without transitions in the reference
case, while Miller et al. (1994) examined three cases
with chaotic behavior and T 5 8, T 5 10, and T 5 15.
These examples proved that the cost function became
increasingly more sensitive with respect to small per-
turbations in the initial conditions as T was increased.

Miller et al. (1994) also gave a comprehensive dis-
cussion on applications of the extended Kalman filter
with the Lorenz model. They found that the statistical
linearization used in the extended Kalman filter, when
deriving the error covariance evolution equation, re-
sulted in a too simplified closure. The estimated solution
was unreliable beyond t 5 11. This was essentially ex-
plained by a poor prediction of error covariances re-
sulting in insufficient gain because of a decaying mode
that reflects the stability of the attractor. A generalization
of the extended Kalman filter, where third- and fourth-
order moments and evolution equations for these were
included, was also examined. It was shown that this
more sophisticated closure scheme provided a more con-
sistent evolution of error statistics, which also resulted
in sufficient gain to keep the estimate on track. Unfor-
tunately, such an approach is not practical for a high-
dimensional ocean or atmospheric model, since the
fourth-order moment requires storage of N4 elements (N
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is the number of state variables). This can be compared
with the second-order moment used in the extended Kal-
man filter where N2 elements must be stored.

Other problems related to error variance prediction
have also been observed with more realistic applications
of the extended Kalman filter, for example, Evensen
(1992) and Gauthier et al. (1993), who used the extended
Kalman filter with quasigeostrophic models. Evensen
(1992) pointed out that by evaluating the model operator
at an unstable, say sheared, background flow this re-
sulted in unbounded error variance growth. In Bouttier
(1994) it was also concluded that unbounded error vari-
ance growth predicted by the error covariance equation
in the Southern Hemisphere has to be limited by a rep-
resentation of error saturation to account for nonlinear-
ities in the model. So, in general, a more consistent
closure is needed in the error covariance equation.

In this paper three recently developed data assimi-
lation methods will be examined and intercompared in
an example with the Lorenz equations. The first method
is the gradient descent method, proposed by Evensen
and Fario (1997), which minimizes a weak constraint
variational formulation. The gradient descent method
requires no forward or backward model integrations
since the gradient is calculated with respect to the full
state in space and time, and a new candidate for the
solution is substituted in every iteration. This method
will be briefly reviewed in section 2b.

Another weak constraint smoother method was re-
cently proposed by van Leeuwen and Evensen (1996).
The method applies ensemble integrations to represent
the density for the model evolution in space and time
and a variance minimizing estimate can then be cal-
culated. The ensemble smoother method will be further
discussed in section 2c.

The ensemble Kalman filter, which is a sequential
method, was proposed by Evensen (1994a, 1994b) and
used in a realistic application by Evensen and van Leeu-
wen (1996). The ensemble Kalman filter is based on a
Monte Carlo approach for solving Kolmogorov’s equa-
tion, which is the equation for evolution of the proba-
bility density function for the error statistics. For this
method there is no need for any closure approximation.
The ensemble Kalman filter will be further discussed in
section 2d.

In the next section, the general formulation of the
data assimilation problem and the methods used to solve
it are discussed. An application of the three data assim-
ilation methods is discussed in section 3 and a general
discussion is given in section 4.

2. Formulation of the inverse problem

Now, the formulation of two weak constraint inverse
problems for the Lorenz equations are presented. Both
formulations define the maximum-likelihood estimator
for the weak constraint problem as long as Gaussian
prior error statistics can be assumed. Two vastly dif-

ferent solution methods are presented for the two for-
mulations and will provide, respectively, the maximum-
likelihood estimate and a variance minimizing estimate
as the solution of the inverse problem. In addition, a
sequential method, the ensemble Kalman filter, is briefly
discussed.

a. Model equations

The Lorenz model consists of a system of three cou-
pled and nonlinear ordinary differential equations (Lo-
renz 1963),

dx
x5 s(y 2 x) 1 q ,

dt

dy
y5 rx 2 y 2 xz 1 q ,

dt

dz
z5 xy 2 bz 1 q . (1)

dt

Here, x(t), y(t), and z(t) are the dependent variables, and
we have chosen the following commonly used values
for the parameters in the equation; s 5 10, r 5 28, and
b 5 8/3. The terms qx(t), qy(t), and qz(t) are assumed
to represent the unknown model errors. Initial condi-
tions for the model are given as

xx(0) 5 x 1 a ,0

yy(0) 5 y 1 a ,0

zz(0) 5 z 1 a , (2)0

where x0, y0, and z0 are the first-guess values of the initial
conditions and the terms ax, ay, and az represent the
errors in the first-guess initial conditions. If all the error
terms were known or equal to zero, these equations
would formulate a well-posed problem having a unique
solution in a mathematical sense.

Now a set of measurements, d ∈ RM, of the true
solution are assumed given and linearly related to the
model variables by the measurement equation

d 5 L[x, y, z] 1 e, (3)

where L ∈ RM is a linear measurement functional, e ∈
RM is a vector of measurement errors, and M is the
number of measurements.

b. Variational formulation

When the measurement equation is added to the sys-
tem of equations, this results in an overdetermined prob-
lem and no solution can be found in general. However,
by allowing the dynamics, the initial conditions, and the
measurements to contain errors, a solution can be found
that minimizes these error terms in a weighted least
squares sense, for example, by minimizing the following
variational integral,
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T T

TJ [x, y, z] 5 dt dt q(t ) W (t , t )q(t )E 1 E 2 1 qq 1 2 2

0 0

T T1 a W a 1 e we, (4)aa

where we define the error vectors q(t)T 5 [qx(t), qy(t),
qz(t)] and aT 5 (ax, ay, az). Here the weights Wqq(t1, t2)
and Waa are 3 3 3 weight matrices, which are optimally
defined as the inverses of the model error covariance
matrix and the error covariance matrix for the initial
conditions, respectively. The M 3 M matrix w is the
inverse of the measurement error covariance matrix.

Note that other estimators than least squares could be
defined. However, the least squares formulation is at-
tractive for several reasons. If the unknown errors are
Gaussian, that is, completely explained by the two first
statistical moments, mean and covariance, then mini-
mizing (4) is equivalent to maximizing the probability
density function,

1
P (x, y, z) 5 exp(2J [x, y, z]). (5)J ZT

Thus, the minimum of (4) is also the maximum-likeli-
hood estimate as long as Gaussian prior error statistics
are assumed. Further, when working with methods that
involve the Euler–Lagrange equations these are readily
derived and the derivatives of the penalty function exist
everywhere.

A very simple approach for minimizing the penalty
function (4) is to use a gradient descent algorithm as
was proposed by Evensen and Fario (1997). Let first
the model variables x(t), y(t), and z(t) be represented on
a numerical grid in time and stored in the state vectors
x, y, and z, all belonging to RN, where N is the number
of grid points in time.

The gradient of a discrete representation of J [x, y, z],
that is, J [x, y, z], with respect to the full state vector
(x, y, z) in time is easily derived. When the gradient
¹x, y, z,J is known it can be used in a descent algorithm
to search for the minimizing solution (x̂, ŷ, ẑ).

Since there is no integration of the model equations
required in the gradient descent method used in this
paper, very simple numerical discretizations based on
second-order centered differences for the time deriva-
tives will be used; that is,

x 2 xn11 n21 x5 s(y 2 x ) 1 q ,n n n2Dt

y 2 yn11 n21 y5 rx 2 y 2 x z 1 q ,n n n n n2Dt

z 2 zn11 n21 z5 x y 2 bz 1 q , (6)n n n n2Dt

where n 5 2: N 2 1 is the time-step index, with N the
total number of time steps. In the ensemble integrations
discussed in the next sections, and for the generation of
the reference case, a standard high-order ordinary dif-

ferential equation solver has been used. The discrete
model error is now written as 5 ( , , ). Further,T x y zq q q qn n n n

as was also done by Evensen and Fario (1997), it is
assumed for convenience that the model weight can be
written as

Wqq(t1, t2) 5 Wqqd(t1 2 t2), (7)

where Wqq is a constant 3 3 3 matrix and the time
regularization, removed in this expression, will now be
accounted for by a smoothing term acting on the inverse
estimate.

The penalty function then becomes

N

TT ˆ TJ [x, y, z] 5 Dt q W q 1 a W a 1 e weO n qq n aa
n51 (8)

N

T1 Dt h W h ,O n hh n
n51

where qn is defined in (6) and hn is just the discrete
centered second derivative acting on the inverse esti-
mate at time step n. Note that q1, qN, h1, and hN use
second-order one-sided difference formulas. It would
have been more consistent to actually smooth the model
errors instead of the inverse estimate, since it can be
shown that such a smoothing constraint used together
with the penalty term for the model errors would define
a norm, and there is a unique correspondence between
such a smoothing norm and a covariance matrix, as
shown by McIntosh (1990). On the other hand will the
smoothing term as included here improve the condi-
tioning of the method since only smooth functions are
searched for. The initial conditions and the measure-
ments are included as before except that the measure-
ment operator now must be considered as a matrix mul-
tiplied with the state vector consisting of all the discrete
elements of x, y, and z.

The required storage for the gradient descent method
is of order the size of the state vector in space and time.
Given a first-guess estimate, the gradient of the cost
function is readily evaluated, and a new state estimate
can be found.

When using nonlinear dynamics, the penalty function
is clearly not convex in general due to the first term in
(4) containing the model residuals. However, both the
measurement penalty term and the smoothing norm will
give a quadratic contribution to the penalty function,
and if the weights w and Whh are large enough com-
pared to the dynamical weight Ŵqq, one can expect a
nearly quadratic penalty function. On the contrary, if
the model residuals are the dominating terms in the
penalty function, clearly a pure descent algorithm may
get trapped in eventual local minima and the solution
found may depend on the first guess in the iteration. For
further details concerning the implementation of this
algorithm, see Evensen and Fario (1997).
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c. Probabilistic formulation

A different but still mathematically consistent for-
mulation for the inverse problem can be given in terms
of probability density functions. Such an approach was
discussed in detail by van Leeuwen and Evensen (1996).
Let first the model variables x(t), y(t), and z(t) be rep-
resented on a numerical grid in time and stored in the
state vector c ∈ R3n, where n is the number of grid
points in time. The determination of the generalized
inverse is then considered as the estimation of the un-
known true model variables c given the data and the
model estimates with information about their prior error
statistics. A Bayesian estimation problem can be for-
mulated where the unknown c is viewed as the value
of a random variable c9. The probability density of the
data d is interpreted as the conditional distribution den-
sity f(d z c) of d9 assuming c9 5 c. The pure model
is regarded as a priori information, and it is used to
assign a density f(c) to the random variable c9. Using
the definition of a conditional probability density we
can derive the probability density of c given the data

f(d z c) f (c)
f (c z d) 5 , (9)

f (d)

where the denominator can be rewritten as

f(d) 5 ∫ f(d z c)f(c) dc. (10)

The joint probability density of the model evolution and
the data is then given by

f (d z c) f (c)
f (c z d) 5 . (11)

∫ f (d z c) f (c) dc

Thus, the probability density of the data given a model
evolution, f(d z c), and the probability density of the
model evolution, f(c), must be known. The former is
usually assumed to be known, for instance, a Gaussian.
The value of c that maximizes f(c z d) is the max-ĉ
imum-likelihood estimate of c.

For the Lorenz model, one has to specify initial con-
ditions with their respective probability density. The
probability f(c) used above should therefore be written
as f(c z c0)f(c0), and accordingly the probability density
for the measurements should be f(d z c, c0). Thus, the
maximum-likelihood estimator maximizes the proba-
bility density

f (c, c z d) 5 Af(d z c, c ) f (c z c ) f (c ), (12)0 0 0 0

or rather the log-likelihood function

log f (c, c z d) 5 log f(d z c, c ) 1 log f (c z c )0 0 0

1 log f (c ) 1 logA,0 (13)

where A is a constant arising from the denominator in
Eq. (11).

In van Leeuwen and Evensen (1996) it was shown
that if all prior error distributions are Gaussian, the max-

imization of the joint probability density (13) becomes
equal to the minimization of the variational integral (4).
A quadratic penalty function like (4) implicitly assumes
that the errors are Gaussian. If this assumption fails to
be true, the penalty function will no longer define the
maximum-likelihood estimator, but it can still be used
as a variance-minimizing estimator.

If one assumes that the model equations describe a
first-order autoregressive, or Markov process—that is,
the model is forced randomly as

dc 5 g(c)dt 1 db, (14)

where db are random increments with known covari-
ance Q and zero mean, the probability density, f(c), for
the model solution can be determined by solving the
Kolmogorov equation,

n n 2] f ]g f Q ] fi ij1 5 . (15)O O
]t ]c 2 ]c ]ci51 i,j51i i j

A derivation of this equation, which is the fundamental
equation for evolution of error statistics, can be found
in Jazwinski (1970). The probability density function
represents the density of an infinite ensemble of possible
model states, each having an associated probability
number. The width of the probability density function
corresponds to the variance of the ensemble and rep-
resents the errors in the predicted solution.

The probability density for the model state has a huge
number of variables, so it is computationally not feasible
for real oceanographic or meteorologic applications to
determine its evolution. An alternative is to solve (15)
using an ensemble integration as discussed by Evensen
(1994b), but to construct the density from the ensemble
members is again not feasible for high dimensional state
vectors. However, the first few moments of f(c) are
easily calculated from the ensemble.

Given the prior distribution f(c z c0)f(c0) for the
model and the distribution for the data one can define
a linear unbiased variance minimizing estimator by solv-
ing

5 cF 1 rTb,ĉ (16)

with

(R 1 w21)b 5 d 2 LcF, (17)

where the matrix of representers or influence functions,
r 5 LQcc, and the representer matrix, R 5 LQccLT, can
both be calculated from an ensemble of model solutions.
Here, Qcc ∈ R3N33N is defined as the covariance matrix
for the state variables including the time dimension. The
discrete representation of the measurement functional
L—that is, the measurement matrix—is denoted L: The
first-guess estimate, cF, will be the mean of the ensem-
ble, thus Qcc can be interpreted as the error covariance
of the first guess. Because of the nonlinearities in the
model, this estimator is not the maximum-likelihood
estimator, even if all the prior error statistics are Gauss-
ian. However, it can be interpreted as the best linear
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unbiased variance minimizing estimator or smoother for
nonlinear model dynamics.

This method, the ensemble smoother, is similar to the
analysis method used in the ensemble Kalman filter (Ev-
ensen 1994b), where a variance-minimizing estimate is
calculated at measurement times based on the current
ensemble statistics except that the smoother estimate is
calculated over the whole space and time domain. Note
that this ensemble smoother is as simple to calculate as
the ensemble Kalman filter and no fields as function of
both space and time need to be stored. The computa-
tional load is similar to that of the ensemble Kalman
filter except that the ensemble members must be stored
at diagnostic output times. The details for construction
of the smoother solution using ensemble statistics were
discussed in van Leeuwen and Evensen (1996).

Finally, it should be pointed out that it was shown
by van Leeuwen and Evensen (1996) that if the model
dynamics are linear then the maximum-likelihood es-
timate and the variance minimizing estimate are iden-
tical.

d. A sequential method: The ensemble Kalman filter

The ensemble Kalman filter is a sequential data as-
similation method where the error statistics are predicted
by solving the Kolmogorov’s Eq. (15) using a Monte
Carlo or ensemble integration. The method was origi-
nally proposed by Evensen (1994b) and has been further
applied and discussed in Evensen (1994a), Evensen and
van Leeuwen (1996), and van Leeuwen and Evensen
(1996).

By integrating an ensemble of model states forward
in time it is possible to calculate statistical moments like
mean and error covariances whenever such information
is required. Thus, all the statistical information about
the predicted model state that is required at analysis
times is contained in the ensemble.

In Evensen (1994b) an analysis scheme was proposed
where the traditional update equation used in the Kal-
man filter is applied, except that the gain is calculated
from the error covariances provided by the ensemble.
Thus, Eqs. (16) and (17) are used for the analysis with
the modification that the error covariance matrix Qcc is
now local in time. It was also illustrated that a new
ensemble with error statistics representing the analyzed
state could be generated by updating each ensemble
member individually using the same analysis equation.
This analysis procedure can be characterized as the op-
timal variance-minimizing method. An inherent as-
sumption is that the error statistics are Gaussian with
vanishing higher-order statistical moments. This is, in
general, not true for nonlinear dynamics where the prob-
ability density function may be far from Gaussian and
higher-order moments may contribute significantly [see
Miller (1994) for example].

The ensemble Kalman filter avoids many of the prob-
lems associated with the traditional extended Kalman

filter, for example, there is no closure problem as is
introduced in the extended Kalman filter by neglecting
contributions from higher-order statistical moments in
the error covariance evolution equation. It can also be
computed at a much lower numerical cost, since only
a few hundred model states may be sufficient for rea-
sonable statistical convergence. When the size Nens of
the ensemble increases, the errors in the solution for the
probability density will approach zero at a rate propor-
tional to . For practical ensemble sizes, say O(100),21/2Nens

the errors will be dominated by statistical noise, not by
closure problems or unbounded error variance growth
as have been observed in the extended Kalman filter
(see Evensen 1992, 1994b). A similar statistical con-
vergence can also be expected in the ensemble smoother.

3. Examples

For all the cases to be discussed, the initial condition
for the reference case is given by (x0, y0, z0) 5
(1.508870, 21.531271, 25.46091) and the time interval
is t ∈ [0, 40]. The observations and initial conditions
are simulated by adding normal distributed noise with
zero mean and variance equal to 2.0 to the reference
solution. The initial conditions used are also assumed
to have the same variance as the observations. These
are the same values that were used in Miller et al. (1994)
and Evensen and Fario (1997).

The model error covariance matrix Q̂qq from Evensen
and Fario (1997),

0.1491 0.1505 0.0007
Q̂ 5 0.1505 0.9048 0.0014 , (18)qq F G

0.0007 0.0014 0.9180

corresponding to a time step equal to Dt 5 0.0167 is
used for the gradient descent method. In the ensemble-
based methods a stochastic forcing term with similar
error statistics is applied. For the time smoothing con-
straint used in the gradient descent method, the same
value as was found by Evensen and Fario (1997) is used;
that is, the smoothing weight matrix is chosen to be
diagonal and given by Whh 5 1025I.

a. Experiment A

The three methods discussed above will now be ex-
amined and compared in an experiment where the dis-
tance between the measurements is Dtobs 5 0.25, which
is the same as was used in Miller et al. (1994). Thus,
it is possible to compare the results presented here with
those presented in Miller et al. (1994) using the extended
Kalman filter and a strong constraint variational method.

1) GRADIENT DESCENT SOLUTION

The maximum-likelihood estimate for a weak con-
straint inverse problem where Gaussian error statistics
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FIG. 1. Experiment A (gradient descent): The inverse estimate for x (upper) and the corresponding error
variance estimate (lower) vs time. The estimated solution is given by the solid line. The dashed line (hardly
distinguishable from the solid line) is the true reference solution, and the diamonds show the simulated
observations. The same line types will be used also in the following figures.

have been assumed can be solved using the gradient
descent method discussed in section 2b.

The first-guess solution was initially chosen as the
mean of the reference solution—that is, about (0, 0, 23).
It was found that using the gradient descent method, the
global minimum was always found as long as the mea-
surement density and quality was reasonably good.
However, when the measurement errors became larger,
or if a low number of measurements were used, the
gradient descent method often converged to a local min-
imum. There also seemed to be a possibility for a local
minima close to the zero solution where both the dy-
namical penalty term and the smoothing penalty vanish.
It is therefore not wise to use an estimate close to the
zero solution as the first guess in the descent algorithm.

To reduce the probability of getting trapped in even-
tual local minima, an objective analysis estimate, con-

sistent with the measurements, was used as a first guess
in the descent algorithm. It was calculated using a
smoothing spline minimization algorithm, which is
equivalent to objective analysis (McIntosh 1990). This
was easily done by replacing the dynamical misfit term
with a penalty on a first-guess estimate in the penalty
function (8).

The gradient descent method was in the current ex-
ample capable of finding the global minimum when
starting from the objective analysis estimate. The min-
imizing solution for the x component is given in Fig. 1
together with the error variance estimate. It is amazing
how close the inverse estimate is to the reference so-
lution even with such large errors in the measurements.
The quality of this inverse estimate is clearly superior
to previous inverse calculations using the extended Kal-
man filter or a strong constraint formulation.
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FIG. 2. Experiment A (ensemble smoother): The inverse estimate for x (upper) and the corresponding
error variance estimate (lower).

The error estimate has been generated using a statis-
tical sampling method (Evensen and Fario 1997). This
approach utilizes the fact that the minimum solution can
be interpreted as the maximum-likelihood estimate of a
probability density function (5). By using a hybrid Mon-
te Carlo method to generate a Markov chain that samples
this function, a statistical variance estimate can be gen-
erated. Note that this method may be used to generate
error estimates independently of the minimization tech-
nique used to solve the weak constraint problem. The
estimated error variances for the x component are given
in Fig. 1. The largest errors appear around the peaks of
the solution.

2) ENSEMBLE SMOOTHER SOLUTION

In the calculation of the ensemble smoother estimate,
an ensemble of 1000 members was used. The same sim-
ulation was rerun with various ensemble sizes and the

differences between the results were minor, for example,
using 500 members gave essentially the same result as
the 1000 member case. The ensemble smoother solution
for the x component and its estimated error variance is
given in Fig. 2. The estimate is not as close to the
reference solution as was the case for the gradient de-
scent method, but that can be expected since this is a
variance minimizing estimate, and the posterior prob-
ability distribution will not be a Gaussian because of
the nonlinearities in the model. A positive result is that
the smoother estimate is not missing any of the tran-
sitions and the performance is only poor when it comes
to reproducing the peaks of the reference solution. The
error variance estimate is given in the lower plot of Fig.
2. In the ensemble smoother the posterior error variances
can be easily calculated by performing an analysis for
each of the ensemble members and then evaluating the
variance of the new ensemble. Clearly, the error esti-
mates are not large enough at the peaks where the
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FIG. 3. Experiment A (ensemble Kalman filter): The inverse estimate for x (upper) and the corresponding
error variance estimate (lower).

smoother performs poorly. This is again a result of ne-
glecting the non-Gaussian contribution from the prob-
ability distribution for the model evolution. Thus, the
method assumes the distribution is Gaussian and be-
lieves it is doing well. Otherwise the error estimate looks
reasonable with minima at the measurement locations
and maxima in between the measurements. Note again
that if a linear model is used, the posterior density will
be Gaussian and the ensemble smoother will, in the limit
of an infinite ensemble size, provide the same solution
as the gradient descent method.

3) ENSEMBLE KALMAN FILTER SOLUTION

Finally, the data assimilation estimate from the en-
semble Kalman filter has been included for comparison,
and the results are given in Fig. 3. Also here the en-
semble consists of 1000 members. The ensemble Kal-
man filter seems to do a reasonably good job in tracking

the phase transitions and also in reproducing the correct
amplitudes in the peaks of the solution. There are a few
locations where the filter estimate starts diverging from
the reference solution, for example, for t 5 26 and t 5
35. Note, however, that the ensemble Kalman filter re-
covers quickly and begins tracing the reference solution
again. The error estimate given in the lower plot of Fig.
3 shows strong error growth at these particular locations
and thus indicates that the ensemble is passing through
a region in the state space, which is associated with
strong instability.

The error estimates show the same behavior as was
found by Miller et al. (1994) with very strong error
growth when the model solution is passing through the
unstable regions of the state space, and otherwise rather
weak error variance growth in the more stable regions.
Note, for example, the low error variance when t ∈ [28,
34] corresponding to the oscillation of the solution
around one of the attractors. A problem for the filter is
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that if the reference solution had made a transition at,
say t 5 30, then the rather low variance estimate might
not be sufficient to produce a large enough gain to pull
the filter estimate out of the stable oscillation. This issue
is further discussed in Miller et al. (1994).

The maybe surprising result is that the ensemble Kal-
man filter seems to perform better than the ensemble
smoother. At least this is surprising based on linear the-
ory, where one has learned that the Kalman smoother
solution at the end of the time interval is identical to
the Kalman filter solution, and the additional informa-
tion introduced by propagating the contribution of future
measurements backward in time further reduces the er-
ror variance compared to the filter solution. For a non-
linear model this will still be true if the extended Kalman
filter and smoother are used. However, for a nonlinear
model neither the extended Kalman filter or the extended
Kalman smoother will be optimal since they are based
on linearized dynamics for the error covariance equa-
tion. Thus, even if the extended Kalman filter and
smoother can be derived from a variational formulation
like (4), as a method for solving the Euler–Lagrange
equations, these methods will not give the same result
as a direct substitution method solving (4) directly. Note
again that if the model dynamics are linear, the ensemble
Kalman filter will give the same solution as the Kalman
filter, and the ensemble smoother will give the same
result as the Kalman smoother.

Finally, it should be pointed out that in the ensemble
filter a variance minimizing analysis is calculated at
measurement times. Thus, even if the ensemble certainly
is non-Gaussian due to the forward integration of non-
linear model equations, only the Gaussian part of the
distribution is used. This is in contrast to the work by
Carter et al. (1996, personal communication), where the
maximum-likelihood analysis is calculated by actually
constructing the density function for the model evolu-
tion and then calculating the conditional density in terms
of analytical functions. They found that this made a
significant improvement on the analysis, however, it is
still not clear how this approach can be used in a prac-
tical way for high-dimensional state spaces.

b. Experiment B

To examine the sensitivity of the three methods dis-
cussed in the previous section, with respect to mea-
surement density, an additional experiment is now per-
formed where the distance between the measurements
is Dtobs 5 0.5.

1) GRADIENT DESCENT SOLUTION

The solution found when using the gradient descent
method is given in Fig. 4. The lower data density causes
the inverse estimate to miss three transitions, thus, the
method converges to a local minimum. This implies that
the lower data density reduces the quadratic contribution

from the measurement functional, compared to exper-
iment A, and the nonlinear model dynamics now have
a larger relative impact on the shape of the penalty
function.

Interestingly, the error estimate is similar to the one
found for the gradient descent solution in experiment
A, and it is not at all capable of capturing the effect of
the transitions that were missed. This is caused by an
improper sampling of the penalty function, where all
candidates are taken in the neighborhood of the estimate
within the well of the local minimum. A proper sampling
is very expensive and would of course also have found
the global minimum of the penalty function. Such a
Monte Carlo approach for minimizing the penalty func-
tion was discussed in Evensen and Fario (1997). Note
also that the missed transitions correspond to regions of
maximum variances from experiment A, which may
suggest that these are sensitive regions also for the high-
er data density in experiment A. The positive result from
this experiment is that the formulation and method used
give a very accurate solution over most of the domain
even if a few transitions are missed.

2) ENSEMBLE SMOOTHER SOLUTION

The ensemble smoother performs rather poorly with
the lower data density, as shown in Fig. 5. This can be
expected in such a strongly nonlinear case where the
measurements do not properly resolve the characteristic
timescale of the system. Note that the smoother solution
consists of a first-guess estimate (mean of the freely
evolving ensemble) plus a linear combination of time-
dependent influence functions or representers, which are
calculated from the ensemble statistics. Thus, the meth-
od becomes equivalent to a variance minimizing objec-
tive analysis method where the time dimension is in-
cluded. The estimated error variances are significantly
larger than in experiment A, which informs us about
the poor quality of the solution, but still seems to un-
derestimate the actual errors in the inverse estimate. The
ensemble smoother seems to do a better job with weakly
nonlinear dynamics or with higher measurement density,
which is natural since it is a variance minimizing
method.

3) ENSEMBLE KALMAN FILTER SOLUTION

The ensemble Kalman filter does a reasonably good
job in tracking the reference solution with the lower
data density, as can be seen in Fig. 6. The estimate is
not as close to the reference solution as was the case
for the gradient descent method, after all, this is a sub-
optimal filter estimate. On the other hand, only one tran-
sition completely missed, compared to three when using
the gradient descent method.

The error variance estimate is also rather consistent
and is at least capable of capturing the missed transition
at t 5 18, although the error variances are also large at
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FIG. 4. Experiment B (gradient descent): The inverse estimate for x (upper) and the corresponding error
variance estimate (lower) vs time. The estimated solution is given by the solid line. The dashed line (hardly
distinguishable from the solid line) is the true reference solution, and the diamonds show the simulated
observations. The same line types will be used also in the following figures.

another three locations, where the first is associated with
the divergence of the ensemble from the initial condition
and the last is in a region, at t 5 34 where the estimate
clearly attempts to diverge from the reference solution
but is pulled back by measurements. The reason for the
peak at t 5 10 is more unclear though.

4. Discussion

Two weak constraint variational methods and a se-
quential method have been compared in two data as-
similation experiments with the Lorenz equations. The
first weak constraint method is a gradient descent meth-
od, which is used to minimize the penalty function, and
it can be shown that if the prior error statistics are Gauss-
ian, then the minimizing solution becomes the maxi-
mum-likelihood estimate. The second method is the en-

semble smoother, which provides a variance-minimizing
estimate by rejecting the non-Gaussian part of the den-
sity of the pure model evolution. In a case with
reasonable data coverage, these two methods are both
capable of reproducing all the state transitions in the
reference solution although the maximum-likelihood es-
timate is superior in reproducing the peaks in the ref-
erence solution. Also the ensemble Kalman filter does
a good job in tracking the reference solution. The filter
estimate is actually better than the ensemble smoother
estimate in reproducing the peaks of the reference so-
lution, and with low data density the ensemble smoother
gives a rather poor result.

These examples illustrate how complicated the data
assimilation problem becomes when strongly nonlinear
dynamics are used. Clearly, there are several solution
methods for the inverse problem which for nonlinear
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FIG. 5. Experiment B (ensemble smoother): The inverse estimate for x (upper) and the corresponding
error variance estimate (lower).

models result in different solutions, while it can be for-
mally shown that all these methods give identically the
same solution when used with linear dynamics. Both
based on the examples discussed in this paper and from
the common understanding of statistical estimation the-
ory, the maximum-likelihood estimate is normally rec-
ognized as the optimal estimate. Thus, a substitution
method for minimizing (4), for example, the gradient
descent method or the even more sophisticated simu-
lated annealing method used by Bennett and Chua
(1994), is probably the only practical approach that can
be applied when solving for the maximum-likelihood
estimate using strongly nonlinear dynamics. Alterna-
tives may be either to construct the probability density
for the model evolution following the lines of Carter et
al. (1996, personal communication), or to use the rep-
resenter method to iterate the Euler–Lagrange equations
(Bennett 1992). However, the former of these is not yet

practical for high-dimensional state spaces and the latter
has been applied only for weakly nonlinear dynamics,
for example, Bennett and Thorburn (1992) and Bennett
et al. (1993).

Using the ensemble Kalman filter we obtained good
solutions using down to about 10 ensemble members,
but this is probably caused by the fact that all three state
variables are observed at measurement times, and the
influence of covariances between variables then be-
comes less important. In Evensen (1994b), the sensitiv-
ity of the ensemble Kalman filter solution with respect
to the size of the ensemble was further discussed, and
experiments were successful for a multilayer QG model
using 100 ensemble members. However, it is not yet
clear if this number must be increased for applications
with primitive equations models. The ensemble smooth-
er may need a larger ensemble size since covariances
also in time are required.



JUNE 1997 1353E V E N S E N

FIG. 6. Experiment B (ensemble Kalman filter): The inverse estimate for x (upper) and the corresponding
error variance estimate (lower).

On the other hand, when the dynamics is only weakly
nonlinear, several solution methods may be used. In
addition to the gradient descent method, the representer
method will probably converge, and the distribution for
the model evolution will probably be close to Gaussian
so that the ensemble smoother should provide good re-
sults, too. For primitive equation models the ensemble
Kalman filter or the ensemble smoother may be the most
practical alternatives because of the lesser storage re-
quirements compared to the gradient descent method,
and one could use an existing model with only limited
additional coding for the analysis step to have a running
data assimilation system. The gradient descent method
is perhaps more practical for lower dimensional state
spaces, for example, when simpler dynamical con-
straints are added to a penalty function in a generalized
inverse formulation for inverting a dataset. Such an ex-

ample has been discussed by Zaron (1995), using time-
independent dynamical constraints.

These examples also illustrate that by allowing the
dynamics to contain errors, that is, the model is imposed
as a weak constraint, the extreme sensitivity of the pen-
alty function with respect to initial conditions seen in
strong constraint applications is completely removed.
Further, there are no limitations on the length of the
assimilation interval.

When using a gradient descent method to solve a
weak constraint problem the full model state in space
and time must be stored simultaneously. Thus, the nu-
merical load is mainly associated with the storage prob-
lem. If an efficient gradient descent type solution meth-
od is used, it is expected that the CPU requirements are
lower than for the ensemble smoother, which requires
the forward integration of an ensemble of model states.
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On the other hand, the ensemble smoother does not
require the storage of a model state in both space and
time. Actually, except for the analysis step, the method
requires only a sequence of independent forward inte-
grations of the model.
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