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ABSTRACT

We formulate a four dimensional Ensemble Kalman Filter (4D-LETKF) that

minimizes a cost function similar to that in a 4D-VAR method. Using per-

fect model experiments with the Lorenz-96 model, we compare assimilation

of simulated asynchronous observations with 4D-VAR and 4D-LETKF. We

find that both schemes have comparable error when 4D-LETKF is performed

sufficiently frequently and when 4D-VAR is performed over a sufficiently long

analysis time window. We explore how the error depends on the time between

analyses for 4D-LETKF and the analysis time window for 4D-VAR.

1 Introduction

Operational data assimilation schemes traditionally have assimilated available observa-

tions as though they, or their innovations from the background forecast, occurred at the

analysis time. With a growing number of observations from instruments such as satellites,

many observations are available between analysis times. However, employing three dimen-

sional data assimilation schemes to match the frequency of these asynchronous observations

would be prohibitively expensive and could introduce imbalances in the resulting analysis

states. New generations of data assimilation schemes, most notably the 4D-VAR and En-
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2 E. J. FERTIG, ET AL.

semble Kalman Filter (EnKF) techniques, are able to more accurately take into account the

timing of asynchronous observations.

One approach to assimilating observations at various time is 4D-VAR (see Le Dimet

and Talagrand, 1986; Courtier et al., 1994; Rabier et al., 1998; 2000). This assimilation

system is currently the operational data assimilation scheme at the European Centre for

Medium-Range Weather Forecasts and Meteo-France, and being developed for operation at

centers including the Canadian Meteorological Centre and the Japan Meteorological Agency.

“Strong constraint” 4D-VAR seeks a model trajectory that best fits the available observa-

tions during a specified time window before the analysis time.

Another developing approach to data assimilation is the EnKF technique (Evensen, 1994;

Burgers et al., 1998; Houtekamer and Mitchell, 1998; Anderson, 2001; Bishop et al., 2001;

Whitaker and Hamill, 2002; Ott et al., 2004; Zupanski, 2005). These schemes evolve an

ensemble of model trajectories to estimate background uncertainty. Though not yet opera-

tional, experiments such as those of Houtekamer et al. (2005), Szunyogh et al. (2005), and

Whitaker et al. (2004) have shown the potential of EnKF for operational data assimilation.

In these implementations of EnKF on operational models, observations are still assimilated

as though they were taken at the analysis time. As Lorenc (2003) points out, when assimi-

lating asynchronous observations with EnKF, one should use the time sequence of ensemble

states between analysis times to account for model state correlations in time as well as

space. In this way, Evensen and van Leeuwen (2000), Anderson (2001), and Hunt et al.

(2004) extend EnKF to accurately assimilate asynchronous observations at the correct time.

Their methods have been successfully applied to operational models by Houtekamer and

Mitchell (2006), Szunyogh and Kostelich (Personal Communication, 2006), and Whitaker et

al. (2006).

In this paper, we present 4D-LETKF, a simplified version of the four-dimensional En-

semble Kalman Filter in Hunt et al. (2004), and compare it to 4D-VAR in a perfect model

scenario using the Lorenz-96 system (Lorenz, 1996). In Section 2, we describe our imple-

mentation of 4D-VAR, and then derive 4D-LETKF using a modification of the 4D-VAR

cost function. In Section 3, we describe our experimental design and present our numerical

results. We find that the two methods yield similar results when the time between analy-

sis is short enough for 4D-LETKF and when the analysis time window is long enough for

4D-VAR, and we discuss our results further in Section 4.
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A COMPARATIVE STUDY OF 4D-VAR AND A 4D ENSEMBLE KALMAN FILTER 3

2 Formulation

2.1 4D-VAR

Since we consider a perfect model scenario in this paper, we formulate here a strong

constraint 4D-VAR scheme. It seeks an initial condition close to the background state (de-

termined by the prior analysis) from which the resulting exact model trajectory remains

closest to the observations over the analysis time window, [t0, tn]. More precisely, it mini-

mizes a cost function:

J (x(t0)) =
1

2

(

x(t0) − xb
)⊤

B−1
(

x(t0) − xb
)

(1)

+
1

2

n
∑

l=0

(yo
l − Hl (x(tl)))

⊤
R−1

l (yo
l − Hl (x(tl)))

where ⊤ denotes the transpose, x(t0) is an m-dimensional the model state at the start of the

analysis window. The model state at each observation time is obtained by integrating the

nonlinear model from x(t0). xb is the the m-dimensional background forecast at the same

time and B is an m × m background error covariance matrix, which is typically constant,

homogeneous, and isotropic. The observation state at time tl is given by the sl-dimensional

vector yo
l . Rl is the associated sl × sl observation error covariance matrix, for l = 0, ..., n.

The observation operator, Hl, maps the model state x(tl) to the observation space at time tl.

For this formulation, observations taken at different times are assumed to have uncorrelated

errors.

The cost J is only a function of the initial model state, x(t0). Therefore, once we deter-

mine x(t0) that minimizes the total cost J , the integrated state x(tn) is the 4D-VAR analysis

at time tn. For this study, we obtain the minimum using a BFGS algorithm adapted from

Numerical Recipes in Fortran (Press et al., 1992,pg. 418). This algorithm requires the gradi-

ent of the cost function, which we compute using the adjoint technique presented in Lawson

et al. (1995). For large systems, Hessian preconditioning is often employed to ensure that the

minimization algorithm converges quickly on an accurate state. In this study, we judged pre-

conditioning to be unnecessary because here the BFGS algorithm converges to the minimum

state quickly (generally after about 20 iterations).

2.2 4D-LETKF

EnKF replaces the time-independent background error covariance matrix B with a time-

dependent sample covariance matrix Pb = (k − 1)−1Xb(Xb)⊤, where Xb is an m× k matrix
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of background ensemble perturbations. That is,

Xb =
[

xb(1)
− x̄b

∣

∣xb(2)
− x̄b

∣

∣ · · ·
∣

∣xb(k)
− x̄b

]

, (2)

where xb(i) denotes the ith ensemble member and x̄b denotes the ensemble mean. In 4D-

LETKF, the deviation of a model solution x(t) from the background mean state x̄b(t) is

approximated between analysis times by a linear combination of the background ensemble

perturbations by:

x(t) ≈ x̄b(t) + Xb(t)w (3)

where w ∈ R
k is a time-independent weight vector. As in Hunt et al. (2004), the analysis

determines which weight vector makes this linear combination “best fit” the observations

over the analysis time window, in the sense of minimizing a cost function like (1).

The projection of x(t) to the observation space at time tl is approximated by:

Hl(x(tl)) ≈ Hl(x̄
b(tl) + Xb(tl)w) ≈ Hl(x̄

b(tl)) + Yb
l w. (4)

The ith column vector of the sl × k matrix Yb
l is defined to be Hl(x

b(i)(tl)) − Hl(xb(i)(tl)),

where Hl(xb(i)(tl)) represents the ensemble mean of the projection of the background state

on observation space.

Replacing B by Pb(t0) and xb by x̄b(t0) and substituting approximations (3) and (4) into

the cost function (1) yields the modified cost function:

J̃(w) =
1

2
(k − 1)w⊤w +

1

2

n
∑

l=1

[yo
l − Hl(x̄

b(tl)) − Yb
l w]⊤ (5)

× R−1
l [yo

l − Hl (x̄
b(tl)) − Yb

l w].

Here, the m-dimensional minimization problem is reduced to a k-dimensional problem, re-

ducing the cost of implementation if the ensemble size k is less than the number of model

variables m.

The minimum of (5) occurs at

wa = P̃a

(

n
∑

l=1

Yb⊤
l R−1

l (yo
l − Hl(x

b(tl)))

)

, (6)

where P̃a is the k × k matrix given by:

P̃a =

(

(k − 1)I +
n
∑

i=1

Yb⊤
l R−1

l Yb
l

)−1

. (7)

These equations correspond to the Kalman filter analysis mean and covariance equations;

here the background mean and covariance for w are 0 and (k−1)−1I, respectively. Now, the
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A COMPARATIVE STUDY OF 4D-VAR AND A 4D ENSEMBLE KALMAN FILTER 5

model state corresponding to (6) is the mean analysis state:

x̄a = x̄b + Xbwa, (8)

The analysis ensemble is generated as follows:

xa(i) = x̄a + XbW(i). (9)

where W(i) is the ith column of the matrix W =
[

(k − 1)P̃a
]1/2

. The forecasts from these

analysis ensemble states are then used for the next analysis as the background ensemble

states.

We remark that a cost function similar to (5), but without the linear approximation (4)

to the observation operator, is used in the Maximum Likelihood Ensemble Filter (Zupanski,

2005). The analysis (6) - (9) is equivalent to the Ensemble Transform Kalman Filter (Bishop

et al., 2001) with the Centered Spherical Simplex Ensemble (Wang et al., 2004). It is also

equivalent, though formally less similar, to the analysis described in Hunt et al. (2004) and

Ott et al. (2004). In this paper, the analysis is performed locally like in Ott et al. (2004), as

described in the next section.

3 Results

We test both 4D-VAR and 4D-LETKF on Lorenz-96, a toy model with variable x in m-

equally spaced points around a circle of constant latitude. The jth component is propagated

in time following differential equation:

dxj

dt
=

1

120
[(xj+1 − xj−2)xj−1 − xj + F ] (10)

where j = 1, ..., m represents the spatial coordinate (“longitude”).

Following Lorenz (1996), like the study of Ott et al. (2004), we choose the external

forcing to be F = 8 and the number of spatial elements to be m = 40. We have inserted the

factor 1
120

so that, according to Lorenz’s estimate, the time scale of the dynamics roughly

matches that of a global weather model, with t measured in hours. We use a fourth-order

Runge-Kutta scheme for time integration of (10) with timestep ∆t = 1.5 hours.

We perform all simulations by assuming a perfect model scenario. That is, a long inte-

gration from an arbitrary initial condition is assumed to be the “true” state. We create the

observations, yo, by adding uncorrelated random noise with standard Gaussian distribution

(mean 0, variance 1) to the true state. To simulate the asynchronous observations, we make

10 uniformly distributed observations at every timestep (1.5 hours). We rotate the observa-
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6 E. J. FERTIG, ET AL.

tion locations so that for every 6 hour period, we make one observation available at each

model grid point.

To ensure consistency between the 4D-VAR and 4D-LETKF experiments, the assimila-

tion experiments use the same truth and observations. At each analysis time we compute

the analysis error as the Root-Mean-Square (RMS) difference between the true state and

the analysis ensemble mean for 4D-LETKF (or simply the analysis state for 4D-VAR). Fur-

thermore, we also compute the RMS difference between the mean forecast from the analysis

ensemble for 4D-LETKF (or the forecast from 4D-VAR) and the true state at 6 hour in-

tervals up to a 5 day forecast. We then average the analysis errors and the forecast errors

over time by taking the RMS over T/1.5n analysis cycles, where the analysis is done every

n timesteps (1.5n hours) and T is the total length of the simulation. In our simulations, we

choose T = 120, 000 hours (approximately 13.5 years). We vary the value of n to examine

how the analysis error depends on the time between analyses for 4D-LETKF and on the

analysis time window for 4D-VAR.

For the 4D-VAR experiments in this perfect model scenario, we obtain the constant

background error covariance matrix B for each analysis window iteratively. We initially run

4D-VAR for T/1.5n analysis cycles using an arbitrary background covariance matrix B0

and compute the covariance B1 of the differences between the true and analysis states at all

of the analysis times. Next, we run 4D-VAR using B1 as the background error covariance

matrix and again compute the covariance B2 of the differences between the truth and back-

ground. We repeat this process until the average analysis error does not change significantly.

To ensure optimality, we then replace the error covariance matrix found by the iterative

algorithm, B, with αB and tune α to empirically minimize the analysis RMS error. For all

analysis windows in this study, α was found to be close to one. This covariance matrix is

similar to that used for the constant error covariance for OI by Wang et al. (2006). In this

scenario, it provides similar analysis errors to using a covariance matrix generated with the

NMC method (Parrish and Derber, 1992).

For 4D-LETKF, we obtain the analysis ensemble at each grid point by computing the

4D-LETKF equations using only the observations within a local region. That is, for each

grid point we make a separate computation of (6)-(9) using only the rows and columns of Yl

and Rl corresponding to the observations in its region. Following Ott et al. (2004), the local

region for a grid point is centered at that grid point and contains a total of 13 grid points.

We present results produced from an ensemble of 15 members, as we found that additional
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ensemble members did not significantly benefit the analysis when using this localization. We

apply multiplicative variance inflation, as in (Whitaker and Hamill, 2002), to compensate for

the effects of model nonlinearity and limited ensemble size. Multiplicative inflation replaces

the background covariance matrix Pb with (1+r)Pb for some r > 0; we do this in LETKF by

replacing (k−1)I with (k−1)I/(1+r) in (7). We tune r to minimize the analysis RMS error.

For these studies, the optimal inflation factor r increased with the length of the analysis

window.

We show the average analysis error as a function of the analysis time window in Figure 1

for 4D-LETKF (solid) and 4D-VAR (dashed). For 4D-LETKF, which should not use the

same observation in more than one analysis, the analysis window must correspond to the time

between analyses, but for 4D-VAR the time between analyses can be chosen independently of

the analysis window. However, for 4D-VAR the analysis window can be chosen independently.

We see that the average analysis error of 4D-LETKF grows with the time between analyses,

and the average analysis error of 4D-VAR decreases with the length of the analysis window.

The 4D-VAR scheme remains stable for a larger range of analysis windows than 4D-LETKF.

The mean analysis RMS error of 4D-LETKF appears to saturate at approximately 0.23 for

analysis windows between 6 and 24 hours, while for 4D-VAR the mean analysis error appears

to approach a similar value for analysis windows between 96 and 108 hours.

For the model we consider here it is computationally feasible to use a large enough

ensemble that no localization is necessary. In Figure 1 we also display results for 4D-LETKF

(dot-dashed) with 50 ensemble members and no localization; that is, the analysis at each

grid point uses all of the observations. In this case, the average analysis error is 5–10% better

than for the smaller (15 member) ensemble with localization.

To further compare the analysis of 4D-VAR and 4D-LETKF, we compare their average

forecast errors as a function of forecast time in Figure 2. The average forecast error at initial

time 0 is the average analysis error. For 4D-VAR we forecast from the 96 hour window anal-

ysis (dashed), while for 4D-LETKF we run the forecast from the 24 hour window analysis.

For each method, the analysis window we use yields near optimal results (for that method)

according to Figure 1. Because 4D-LETKF provides initial conditions for an ensemble fore-

cast, consider both the mean of an ensemble forecast (solid) and a forecast from the mean

analysis state (dot-dashed) to compare with the 4D-VAR forecast. We observe that the 4D-

VAR and 4D-LETKF forecasts from the analysis mean have comparable mean RMS errors.

The advantage of the ensemble forecast becomes apparent after two and a half days.
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8 E. J. FERTIG, ET AL.

4 Summary

In assimilating the asynchronous observations considered here, 4D-VAR and 4D-LETKF

yield comparable average analysis and forecast errors when 4D-VAR is performed with a long

enough analysis time window and when 4D-LETKF is performed sufficiently frequently.

In an operational setting, the time between analyses (and thus the time window for 4D-

LETKF) may not be adjustable, while the 4D-VAR analysis window can be chosen as large

as computational constraints allow. For the scenario of this paper, our results indicate that

if the desired time between analyses is 1 day or less, the mean analysis from 4D-LETKF

with 15 ensemble members is of similar quality to the 4D-VAR analysis with a 4 day time

window. Our results for a 50 member ensemble, shown in Figure 1, indicate that the loss of

accuracy in 4D-LETKF due to a limited ensemble size does not depend significantly on the

time between analyses. Since this large ensemble allows for full rank covariances and a global

analysis, we presume that the loss of accuracy as the time between analyses increases is due

primarily to model nonlinearity. While 4D-VAR is not strongly affected by nonlinearity,

in practice model error will affect both methods. Its effect will increase the errors as the

analysis time window grows.

The introduction of model error could further distinguish the two 4D data assimilation

schemes. 4D-VAR generally accounts for model error by using the “weak constraint formu-

lation”, which adds additional terms of the cost function. In an Ensemble Kalman Filter,

additional amounts or different types of variance inflation are generally used to counteract

model error. While this is the simplest approach to take in 4D-LETKF, it is also possible

to minimize a modified cost function in the space spanned by the ensemble trajectories.

As implemented in this paper, both 4D-VAR and 4D-LETKF assimilate the asyn-

chronous observations at comparable computational cost. However, the implementation of

4D-LETKF can be dramatically sped up by computing the analysis for each grid point in

parallel (Szunyogh et al., 2005). Furthermore, like other Ensemble Kalman Filters, the 4D-

LETKF data assimilation scheme is model independent and thus can easily be adapted to

new and evolving models without the human cost involved in determining the adjoint of the

model for 4D-VAR.
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FIGURE CAPTIONS

Figure 1. We show the mean analysis error as a function of analysis window for 4D-VAR

(dashed). The mean analysis error is shown as a function for time between analyses for

4D-LETKF with 15 ensemble members and localization (solid) and 50 ensemble members

and no localization (dot-dashed). The 15 (50) ensemble member 4D-LETKF experiments

used inflation factors of 10% (8%) for the 12 hour, n = 8, analysis window, 23% (14%) for

the 24 hour, n = 16, analysis window, and 65% (24%) for the 42 hour, n = 28, analysis

window. The 4D-LETKF analysis diverged for all inflation factors below 100% for analysis

windows longer than 42 hours and 48 hours in the 15 and 50 ensemble member experiments,

respectively.

Figure 2. Mean forecast errors as function of forecast time for 4D-VAR with 96 hour

(dashed) and for a 4D-LETKF with 24 hour analysis window using an ensemble forecast

(solid) and forecast from the mean analysis state (dot-dashed). The mean analysis error of

each scheme is at time 0.
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Figure 1. We show the mean analysis error as a function of analysis window for 4D-VAR (dashed). The mean analysis error
is shown as a function for time between analyses for 4D-LETKF with 15 ensemble members and localization (solid) and 50
ensemble members and no localization (dot-dashed). The 15 (50) ensemble member 4D-LETKF experiments used inflation
factors of 10% (8%) for the 12 hour, n = 8, analysis window, 23% (14%) for the 24 hour, n = 16, analysis window, and 65%
(24%) for the 42 hour, n = 28, analysis window. The 4D-LETKF analysis diverged for all inflation factors below 100% for
analysis windows longer than 42 hours and 48 hours in the 15 and 50 ensemble member experiments, respectively.
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Figure 2. Mean forecast errors as function of forecast time for 4D-VAR with 96 hour (dashed) and for a 4D-LETKF with 24
hour analysis window using an ensemble forecast (solid) and forecast from the mean analysis state (dot-dashed). The mean
analysis error of each scheme is at time 0.
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