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1 INTRODUCTION

Gudmundsson (1987, 1994) introduced the extended

Kalman filter (EKF) as a filtering technique for use in

fish stock assessment by implementing and applying it

with a prediction model for Icelandic cod. The EKF is a

filtering method similar to the original Kalman filter

where the error covariance statistics are evolved forward

in time using a linearized version of the dynamical model.

It has been shown in a number of studies that this

linearization may be too severe when the model dynam-

ics become too nonlinear, e.g., Evensen (1992) and Miller

& al. (1994). This has initiated the search for new filter-

ing techniques which are designed to handle strongly

nonlinear dynamical models in a consistent manner.

One such method, the ensemble Kalman filter (EnKF),

was proposed by Evensen (1994). It was derived as a

Monte Carlo method for solving the Kolmogorov’s equa-

tion for the time evolution of the probability density func-

tion for the model state. Together with an efficient algo-

rithm for the computation of the analysis step, the EnKF

provides a consistent and efficient formalism which

makes it possible to apply filtering techniques with highly

nonlinear models in huge state spaces. The EnKF has

been used and examined in several applications, e.g.,

Evensen & van Leeuwen (1996), Evensen (1997a), and

Houtekamer & Mitchell (1998).

Later developments include the ensemble smoother

(ES) from van Leeuwen & Evensen (1996) which al-

lows for the information from measurements to be propa-

gated backward in time to improve the estimates at prior

times. A recent extension of this method is the ensemble

Kalman smoother (EnKS), which has proven to work

significantly better with nonlinear dynamics and is for-

mulated as a direct extension of the EnKF. Comparison

of results from the ES and the EnKS provides an indica-

tion of the importance of nonlinear effects in the dy-

namical model.

The ensemble-based methods comprise an approach

to data assimilation which attempts to efficiently solve

the fully nonlinear assimilation problem rather than sim-

plifying the already approximate EKF, see e.g. Todling

& Sivakumaran (1998) for a summary of different sub-

optimal Kalman smoother implementations. The ensem-

ble techniques have been shown to resolve major prob-

lems experienced with the EKF in Evensen (1994) and

Miller & al. (1999). First of all it is ensured that the time

evolution of error statistics does not suffer from linear-

izations or other approximations in the assimilation

schemes. Further, there are no restrictions imposed if

the basic model is extended to a more complex and

nonlinear one at a later stage. This is one of the major

strengths of the ensemble techniques. The methods are

model independent and it is possible to improve, extend

or even replace the model while keeping the present as-

similation system unchanged. Thus, it is possible to de-

velop a generic and model independent implementation

of the ensemble methods.

The main purpose of this manuscript is to introduce

the ensemble-based assimilation techniques to the field
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of fish stock assessment. Here the EnKF, ES and EnKS

have been implemented with the fish stock model pro-

posed by Gudmundsson (1987, 1994), and his experi-

ments have been revisited using the new methods.

2 THE FISH STOCK PREDICTION MODEL

The model by Gudmundsson (1987, 1994) starts with

the youngest ages and flows towards the oldest, and num-

bers at age are converted to catch at age. Thus we need a

recruitment model to estimate the number of fish enter-

ing the fish stock each year. In the absence of such a

model we have used a constant recruitment with high

variance. Gudmundsson (1994) has given several alter-

native models for describing the fishing mortality, but

the main features are the same for all of these. The major

assumption is that the fishing mortality during one year

will be somehow related to the fishing mortality in pre-

vious years.

The model by Gudmundsson (1994) is based on the

following equations, where we have used the common

notation where a is age, C is catch, N is abundance, F is

fishing mortality, M is the natural mortality which is cho-

sen to be constant and Z = F + M is total mortality, i.e.,

C(a, t) = N(a, t)e–Z(a, t) F(a, t) / Z(a, t)

for 4 ≤ a ≤ A, (1)

N(a, t) = N(a – 1, t – 1)e–Z(a – 1, t–1)

for 5 ≤ a ≤ A, (2)

log F(a, t) = U(a, t) + V (t) + µ
1
(a, t)

for 4 ≤ a ≤ A, (3)

where fish is assumed to enter the fishery at age a = 4

and the oldest fish caught is A = 10. The abundance of

four year old fish in equation (2) is determined by a re-

cruitment model (assumed constant in our model). In

equation (3), U(a, t) represents the selectivity. It may

differ between different fishing fleets as it is determined

by the technology employed in fishing (e.g. mesh size).

Further V(t) represents the overall change in fishing

mortality due to fishing gear. The selectivity is given as
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where a
m
 is set to 9. Thus, fish older than a

m
 experience no

difference in selectivity. To avoid an underdetermined sys-

tem the following conditions are prescribed to model V(t),

V(t) = Y(t) + µ
3
(t), (5)

Y(t) = Y(t – 1) + α + µ
4
(t). (6)

Here α is a trend term, i.e. a constant improvement of

fishing gear or constantly increasing fishing effort. We

have modeled the fishing mortality as a multivariate ran-

dom walk process through the random variables, µ
i
, which

are mutually independent, normally distributed with mean

equal to zero, has a prescribed variance (discussed below)

and are serially uncorrelated. Considering actual causes

of variations in fishing mortality rates, the weather and

irregular variations in conditions in the sea are mainly tran-

sitory, but technological development and changes in fleet

size induce more permanent variations.

We have used approximately the same model param-

eters and initial and boundary conditions as in Gud-

mundsson (1994) to allow for comparison of results. This

includes the use of a constant recruitment rate with high

initial variance or uncertainty and a constant natural

mortality, but unlike Gudmundsson (1994) we have ne-

glected effects from immigration and emigration. The

model is examined using catch at age data on Icelandic

cod from 1977 to 1990.

When the model is integrated forward in time the

model variables are updated in the sequence Y(t), V(t),

U(a, t), log F(a, t) and abundance N(a, t). A practical

implementation of the system of equation is obtained by

modeling the stochastic errors as follows:

Y(t) = (Y(t – 1) + α) (1 + σ
0
µ

4
(t)), (7)

V(t) = Y(t) (1 + σ
0
µ

3
(t)), (8)
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log F(a, t) = (U(a, t) + V(t)) (1 + σ
0
µ

1
(a, t))

for 4 ≤ a < A, (10)

N(a, t) = N(a – 1, t – 1)e–Z(a–1,t–1)

for 5 ≤ a < A (11)

C(a, t) = N(a, t)e–Z(a,t) F(a, t) / Z(a, t)

for 4 ≤ a < A. (12)

Thus, with the variance of µ
i
 = 1, the stochastic forcing

in the model have a magnitude determined by the stand-

ard deviation σ
0
 = 0.04 multiplied with the actual values

of the model variables. This results in a stochastic forc-

ing which is proportional to 4 % of the value of the model

variables. Note that the catch is computed as a diagnos-

tic variable after the abundance is updated.

3 ASSIMILATION METHODS

Gudmundsson (1987, 1994) used the so-called extended

Kalman filter (EKF) to merge the information from ob-
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servations with the dynamical fish stock model. The EKF

is a filter method, which means that the model is inte-

grated forward in time and every time there are meas-

urements available these are used to reinitialize the model

before the integration continues. Neglecting the time in-

dex and denoting a model forecast and analysis as ψ f

and ψ a respectively, with measurements contained in d,

and the respective covariances for model forecast, analy-

sis and measurements as P f, P a and R, the analysis equa-

tion becomes

ψ a = ψ f + P f H T (H P f H T + R)–1 (d – H f), (13)

with the reduced error covariances given as

P a = P f – P f H T(H P f H T + R)–1 H P f. (14)

This reinitialization is determined as a weighted linear

combination of the model prediction and the measure-

ments. The weights are the inverses of the error  covari-

ances for the model prediction and the measurements,

and the optimal linear-combination becomes the Best

Linear Unbiased Estimator (BLUE).

The error covariances for the measurements, R, need

to be prescribed based on our best knowledge about their

accuracy and the methodologies used to collect them.

The error covariances for the model prediction are com-

puted by solving an equation for the time evolution of

the error covariance matrix of the model state. Given a

linear dynamical model written on discrete form as

ψ
k+1

 = Fψ
k
, (15)

the error covariance equation becomes

P
k+1

 = F P
k
 F T + Q. (16)

The matrix Q is the error covariance matrix for the model

errors. The model is assumed to contain errors, e.g. due

to neglected physics and numerical approximations.

If the model is nonlinear, e.g. on the form

ψ
k+1

 = f(ψ
k
), (17)

the error covariance equation (16) is still used but with

F the tangent linear operator, or Jacobian of f(ψ). Thus,

a linearized and approximate equation is used for the

prediction of error statistics in the EKF. A comprehen-

sive discussion of the properties of the EKF can be found

in the literature, but for a convenient summary which

intercompares the EKF with EnKF to be discussed next,

see the review by Evensen (1997b).

3.1 ENSEMBLE KALMAN FILTER

The EnKF was first proposed by Evensen (1994) to re-

solve a major problem related to the use of the EKF with

nonlinear dynamics in large state spaces. The linear-

ization used in the error covariance equation has been

shown to be invalid in a number of applications, e.g. by

Evensen (1992) and Miller & al. (1994). In fact, the equa-

tion (16) is no longer the fundamental equation for the

error evolution when the dynamical model is nonlinear.

In this case, by using (16) one neglects contributions from

higher order statistical moments, as a statistical closure

approximation. For a nonlinear model where we appre-

ciate that the model is not perfect and therefore contains

model errors we can write it as a stochastic differential

equation (on continuous form) as

dψ = f(ψ)dt + dq. (18)

This equation states that an increment in time will yield

an increment in ψ and in addition there will be a random

contribution to the increment from dq which is the

stochastic forcing representing the model errors. From

this equation one can derive the Fokker-Planck or Kol-

mogorov’s equation which describes the time evolution

of the probability density φ(ψ) of the model state,
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where Q = dqdqT is the covariance matrix for the model

errors and n is the dimension of the model state. This

equation does not apply any important approximations

and can be considered as the fundamental equation for

the time evolution of error statistics. A detailed deriva-

tion is given in Jazwinski (1970). The error covariance

equation (16) can be derived by taking the first statisti-

cal moment of the Fokker Planck equation. The equa-

tion describes the change of probability density in a lo-

cal “volume”, which is dependent on the divergence term

describing a probability flux into the local “volume” rep-

resenting the impact of the dynamical equation, and the

diffusion term which tends to flatten the probability den-

sity due to the effect of stochastic model errors.

The EnKF applies a Monte Carlo method to solve this

equation. The probability density can be represented us-

ing a large ensemble of model states and evolved in time

by integrating these model states forward in time accord-

ing to the model dynamics described by the stochastic

differential equation (18). This ensemble prediction is

equivalent to solving the Fokker Planck equation using

a Monte Carlo method, a procedure which forms the

backbone for the EnKF.

An ensemble representation of the analysis equations

(13-14) is used for the computation of the analysis and
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is further discussed in Section 3.4. See also Burgers &

al. (1998) for a detailed discussion of the analysis scheme

and the tutorial review of the EnKF and the EKF given

by Evensen (1997b).

To summarize, ensemble integrations are used to pre-

dict error statistics which are used to update or reinitialize

the model solution with a “subspace” BLUE estimate,

whenever observations are available. It becomes a sub-

space BLUE because normally the number of members

in the ensemble is less than the independent degrees of

freedom in the model state.

3.2 ENSEMBLE SMOOTHER

The ensemble smoother (ES) was first proposed by van

Leeuwen & Evensen (1996) as a method for solving for

the variance minimizing estimate defined by the Bayes

theorem,

    

φ ψ
φ ψ φ ψ

φ
( | )

( ) ( | )

( )
d

d

d
= . (20)

This equation states that the probability density for the

model state, given a vector of measurements, d, is equal

to the density of the model state without any informa-

tion from measurements, φ(ψ), times the density of the

measurements, φ(d |ψ). The denominator, φ(d) is the in-

tegral of the numerator and ensures that the integral of

the posterior density becomes equal to one, (the prob-

ability of finding the model state, somewhere, is equal

to one).

The ensemble smoother (ES) attempts to find the so-

lution which minimizes the posterior error variance.

Realizing that the density φ(ψ) can be found from an

ensemble integration which solves the Fokker Planck

equation, and that the density for the measurements of-

ten can be prescribed as a Gaussian, a variance minimiz-

ing analysis scheme similar to the one used in the EnKF

can be applied. By neglecting non-Gaussian contribu-

tions in φ(ψ) one can compute the mean and error

covariance of the model prediction as a function of space

and time. This information can be used together with the

measurement vector and the error covariance of the meas-

urements to compute a variance minimizing (BLUE)

analysis in space and time.

3.3 ENSEMBLE KALMAN SMOOTHER

Evensen & van Leeuwen (2000) derived a smoother for-

mulation where the measurements are processed sequen-

tially in time. The method was named ensemble Kalman

smoother. It is based on an assumption that the measure-

ments are independent in time which is most often the

case, and possesses several important properties. The

EnKF solution is the first guess solution for the EnKS,

and the smoother solution can be found by computing a

BLUE analysis computing the impact of measurements

backward in time at each an analysis step in the EnKF. If

the model is linear this method will give identical re-

sults to those from the ES, since the two methods are

solving the same general formulation. If the model is

nonlinear, this approach will have an advantage over the

ES since observations are assimilated sequentially dur-

ing the forward ensemble integration. This keeps the

ensemble “on track” and it will be more consistent with

the measurements before the smoother analysis is com-

puted. This is in contrast to the ES which uses a pure

ensemble integration, where non-Gaussian contributions

can freely develop in the first guess for the analysis. In

addition to introducing the EnKS, Evensen & van

Leeuwen (2000) explain the connections between the

different filtering methods and the impact of non-

Gaussian contributions to the analysis.

3.4 THE ENSEMBLE-BASED ANALYSIS SCHEME

Here we give a brief introduction to the analysis scheme

used by the ensemble methods. The forecasted model states

are stored in a matrix A where each column contains one

member of the ensemble. An ensemble approximation of

the model error covariance matrix is then given by

      

P A A A Ae

f
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n
=

−
− −

1

1
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where each column of the matrix  A 
f

 contains the mean

of the ensemble,
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=
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1nens
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j
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(22)

The overline denotes an expectation value and the en-

semble mean, ψ, is considered to be the best guess esti-

mate, and the spreading of the ensemble around the mean

gives the error variance in the ensemble.

In order to have a variance minimizing analysis

scheme, Burgers & al. (1998), we also need to create an

ensemble of observations, D, where each column, d
j
 , is

a perturbed measurement vector created by adding a noise

vector to the observations

d
j
 = d + ε

j
, j = 1,…, n

ens
. (23)

Here ε
j
 is a vector of observation noise picked randomly

from a Gaussian distribution with mean equal to zero

and the standard deviation equal to the measurement

standard deviation. Thus the measurement error covari-

ance matrix is given by

    R R≈ =e

Tεε . (24)

The analysis can now be computed from

Aa = A f + P f

e
 H T(HP f

e
 H T + R)–1(D – HA f ). (25)

This equation illustrates some of the properties of the

ensemble methods used here. The new analyzed ensem-
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ble is generated by updating every member of the fore-

casted ensemble using the equations for the standard

BLUE with covariances computed from the ensemble.

Note that an ensemble of measurements is also created

to ensure that the analyzed ensemble will have the cor-

rect covariance. Thus, using these methods, there is no

need for additional resampling to create the new ensem-

ble. This is a great computational advantage over non-

linear filters such as those discussed by, e.g., Anderson

& Anderson (1999) which need additional resampling at

every analysis step.

In the EnKF, the equation (25) describes the analysis

if P f

e
 is the model error covariance at the particular time

t
k
 when the analysis is computed. On the other hand, if

P f

e
 is the error covariance for the whole model state in

space and time, then this equation will correspond to the

analysis scheme in the ES. For the EnKS the equation is

used to process the observations sequentially in time and

for every analysis the error covariances will contain cor-

relations from time t
k
 and backward in time to the initial

state. Note that these correlations are computed based

on the ensemble resulting from all previously computed

analyses. See Evensen & van Leeuwen (2000) for a more

detailed discussion of the analysis scheme for the filter

and smoothers.

4 EXAMPLE

In the following discussion we have examined the dif-

ferent data assimilation methods in an application with

catch at age data for Icelandic cod in the period from

1977 to 1990. Effects of emigration have been neglected.

However, there was a significant immigration of 8 years

old cod in 1981 and 6 years old cod in 1990, from the

east Greenland cod stock which is treated as an error

source for the model. In Gudmundsson (1987, 1994),

the immigration needed to be known in advance and in-

corporated into the model equations.

4.1 MODEL CONFIGURATION AND INITIALIZATION

We have tried to choose the model parameters close to

those used by Gudmundsson. The natural mortality is

set to M = 0.2, and the trend parameter α, signifying an

improvement of fishing gear and increased effort in time

is chosen to be α = 0.025. The fish enter the fishery at

age 4, fish older than 9 years will experience no differ-

ence in selectivity and the oldest fish caught are 10 years

old. Thus for each of the variables the age, a, varies from

4 to 10, except for U(a, t) where a varies from 4 to 8

(with a
m
 = 9) and the variables Y , V and U(a

m
, t) which

are independent of a.

The model state vector, ψ, contains the variables N(a, t),

log F(a, t), U(a, t), Y(t), V(t), U(a
m
, t) and C(a, t). The

catch C(a, t) has been included as a diagnostic variable

for practical reasons which allows for the use of a linear

measurement functional operating directly on the catch

variable, rather than a nonlinear functional operating on

the model state. Every time we have a measurement of

the catch, which in this particular experiment is at every

time step (i.e. once a year), the predicted catch is calcu-

lated and the data assimilation is performed. The updates

of the rest of the model state from catch observations is

performed through the use of multivariate cross correla-

tions contained in the ensemble of model states.

As with the model parameters, the initial and bound-

ary conditions are chosen close to the values used by

Gudmundsson (1994). The initial conditions of N(a, t),

log F(a, t), U(a, t), Y(t), V(t) and U(a
m
, t) are given in

Table 1, and the initial catch is calculated from these

values. The boundary condition N(4, t) has in the lack of

a recruitment model been given the same value as N(4, 1).

4.2 SPECIFICATION OF ERROR STATISTICS

All statistical information is represented by an ensem-

ble. We have used 500 ensemble members to reduce sta-

tistical fluctuations in the results although 100-150 would

probably be sufficient based on experiences from previ-

ous applications. The ensemble members are generated

from the formula

    
ψ ψ σj jv= +( )1 2 , (26)

where v
j
 is a random number taken from a Gaussian dis-

tribution with mean equal to zero and standard deviation

equal to one.

Table 1. Initial values for the experiment with Icelandic cod stocks. The abundance N is

given in million fish. The other variables have no units.

N(4, 1) = 133.82 log F(4, 1) = –1.7487 U(4, 1) = –1.64

N(5, 1) = 63.75 log F(5, 1) = –1.0527 U(5, 1) = –0.95

N(6, 1) = 47.92 log F(6, 1) = –0.7744 U(6, 1) = –0.67

N(7, 1) = 15.69 log F(7, 1) = –0.3011 U(7, 1) = –0.20

N(8, 1) = 8.93 log F(8, 1) = –0.2169 U(8, 1) = –0.11

N(9, 1) = 3.35 log F(9, 1) = –0.1508 U(a
m
, 1) = –0.05

N(10,1) = 1.00 log F(10, 1) = –0.1800 V(1)&Y(1) = –0.1
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For the initial values of N the variance is given the

fairly large value, σ 2 = 0.25, to account for our lack of

knowledge about the initial size of the fish stock. The

initial values of U, V , Y and log F have been given a

variance, σ 2 = 0.025.

The dynamical variance is incorporated into the model

in a similar way and is set to σ 2 = 0:01 (equivalent to

10 % standard deviation in a model prediction from one

year to the next). It applies to the entire vector of state

every time this is integrated forward in time. This vari-

ance could have been set higher for the years when im-

migrational effects are important since the model solu-

tion is less reliable in these years.

The ensemble of measurements is generated in the

same way and the measurement variance is set to

σ 2 = 0.01. Thus the measurements and a one-year model

forecast from a perfect initial condition could be expected

to have errors of the same order. However, since the ini-

tial conditions and the boundary conditions are poorly

known, and at the same time rather dominant, the

analyzed solution is expected to be closer to the obser-

vations than to the model forecast.

4.3 DISCUSSION OF RESULTS

The following discussion considers the results from an

experiment where the three assimilation methods, i.e.,

the EnKF, the ES and the EnKS are used with identical

setups. Further, an additional pure ensemble integration

(Ens pred) with no assimilation of data is performed.

This allows us to examine the impact of assimilation of
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Fig. 1. The upper plot shows esti-

mated abundance in million fish for

4-10 years old fish. The long dashed

line is observed catch. The lower plot

shows the corresponding variances

of the abundance estimates for 4-10

years old fish.
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data both for the estimated solution and the error

variances.

The upper plot in Fig. 1 shows the sum of the abun-

dance of 4 to 10 years old cod, i.e., the total stock as

described by the model, for the different assimilation

methods and the pure ensemble prediction. In addition

the observed catch data are shown. The lower plot shows

the corresponding error variances. The ensemble predic-

tion results in a fairly steady total stock of around 300

million fish. The variance of the ensemble prediction

indicates a large uncertainty corresponding to a standard

deviation of about 90 million fish, i.e. almost one third

of the total stock.

The impact of the catch data is obvious when examin-

ing the assimilation estimates. All the methods predict

an increased size of the stock around 1986 to 1989. The

smoothers also update the fish stock at the initial time

by bringing information from data backward in time. The

error variances are also reduced dramatically by the in-

troduction of catch data. The EnKF predicts an error

variance indicating a standard deviation of around 44

million fish, while the smoothers further reduce the stand-

ard deviation to around 14 million fish.

As the theory predicts, the EnKF and the EnKS ends

up with the same estimate and error variance in the final

year, and the EnKS gives an improved solution for all

previous years. The EnKS and the ES solutions are fairly

close, indicating that the model is only weakly nonlinear,

resulting in a nearly Gaussian density for the model pre-

diction. Trends in the estimates are otherwise consistent
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Fig. 2. The upper plot shows esti-

mated abundance in million fish for

7 years old fish. The lower plot

shows the corresponding variances

of the abundance estimates for 7

years old fish.
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with those found by Gudmundsson (1987, 1994).

The upper plot in Fig. 2 shows the estimated abun-

dance of seven years old cod from the different simula-

tions and the lower plot shows the corresponding error

variances. The year 1980 is particularly interesting. Both

smoother solutions results in very high and probably in-

correct values for this year, which are due to an immi-

gration of 8 years old cod observed to occur in 1981.

Since immigrational effects are neglected in the model

formulation, the assimilation system interprets this im-

migration as fish that have survived from 1980, and there-

fore decreases the fishing mortality rate for this year, as

seen in Fig. 3, in addition to increasing the abundance.

Thus, by analyzing the filter and the smoother solutions

in conjunction it may be possible to detect immigration

and/or emigration, and the effects of these may be added

to the model for a second simulation as it was done by

Gudmundsson (1994).

From the filter solution, which does not take later val-

ues into account, we see that 1980 would have been a

good year for 7 years old cod, anyway. Thus, only a part

of the peak in the smoother should be seen as an error

due to immigration. Gudmundsson (1994) took explic-

itly into account immigrational effects and for the year

1980 he got a result which lies between the EnKF solu-

tion and the two smoother solutions.

Fig. 3 shows the estimated fishing mortality rates and

the corresponding variances in the upper and lower plot,

respectively. The fishing mortality rates are not allowed

to vary to the same extent as those obtained by Gud-
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Fig. 3. The upper plot shows esti-

mated fishing mortality for 7 years

old fish. The lower plot shows the

corresponding variances of the esti-

mated fishing mortalities for 7 years

old fish.
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mundsson (1994), although they are otherwise similar.

A constant trend term was included in the model and

this could perhaps been chosen smaller or omitted alto-

gether, since both the filter and smoother estimated

mortalities are lower than the pure ensemble prediction.

From the catch plot in Fig. 4 it is seen that the model

relies more on the observed data than on the model pre-

diction despite the fact that the measurement variance is

equal to the model variance. This can be explained by

the large initial variance which gives low weight on the

model solution initially. The EnKF, the ES and the EnKS

solutions are very similar and about perfectly fitted to

the measurements and they all provide estimates with

almost equal variance.

5 SUMMARY

This paper has introduced some new ensemble-based

assimilation techniques for use in fish stock assessment.

The purpose has been to demonstrate the feasibility of

the methods in fish stock assessment and to discuss the

general properties of them. Three methods, i.e. the En-

semble Kalman Filter (EnKF), the Ensemble Kalman

Smoother (EnKS) and the Ensemble Smoother (ES),

were implemented with the fish stock model by Gud-

mundsson (1994). The methods were applied in an ex-

periment with catch at age data of Icelandic cod, in a

similar setup to the one used by Gudmundsson (1994).

The model used here is probably too simple for op-

Fig. 4. Upper plot shows estimated

catch in million fish for 7 years old

fish. Note that the estimated catches

for the filter and the smoothers are

very similar and the curves overlap

in the plot. The lower plot shows the

corresponding variances of the esti-

mated catch for 7 years old fish. The

variance of the pure ensemble pre-

diction where no data are assimilated

is large compared to the variances

of the filter and the smoothers (typi-

cally between 20 and 50 and there-

fore not shown), indicating a posi-

tive impact of the data.
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erational fish stock assessment, but has been useful for

demonstrating the methodologies. Further, the ensem-

ble techniques can be characterized as model independ-

ent, i.e., the data assimilation framework can be used

without modifications with any model just by replacing

the model integration subroutine and the definition of

the model state. Thus, more complex models can be in-

troduced in the system whenever needed.

In the present application, it turned out that the model

used is only weakly nonlinear. The strength of the en-

semble methods is that they handle strongly nonlinear

models just as well. This is in contrast to traditional as-

similation methods which are based on linearizations to

develop tangent linear operators and/or adjoints. Stronger

nonlinearities in the model would lead to greater non-

Gaussian contributions for the predicted statistics, and

in this case we would expect that the EnKS would out-

perform the ES as was seen in the application with the

Lorenz model in Evensen (1997a).

In summary, we now have a set of filters and smoothers

which are designed to work well with strongly nonlinear

and high dimensional state space models. Further, the

methodologies have successfully been applied with a

simple fish stock assessment model. A next step will be

to adapt or build a more sophisticated model which can

be introduced into the assimilation system and a more

extensive validation exercise should be preformed using

additional data sets. An ongoing activity involves the

introduction of climate variables or information. The

underlying hypothesis is that inclusion of appropriate

climate time series will reduce the variance attached to

the estimated fishing mortality, which in turn will give

improved abundance estimates. Such time series could

be wind and hydrography for the Faeroe Island cod stock

or temperature for the North East Atlantic cod stock.
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