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ABSTRACT

Rank histograms are a tool for evaluating ensemble forecasts. They are useful for determining the reliability
of ensemble forecasts and for diagnosing errors in its mean and spread. Rank histograms are generated by
repeatedly tallying the rank of the verification (usually an observation) relative to values from an ensemble
sorted from lowest to highest. However, an uncritical use of the rank histogram can lead to misinterpretations
of the qualities of that ensemble. For example, a flat rank histogram, usually taken as a sign of reliability, can
still be generated from unreliable ensembles. Similarly, a U-shaped rank histogram, commonly understood as
indicating a lack of variability in the ensemble, can also be a sign of conditional bias. It is also shown that flat
rank histograms can be generated for some model variables if the variance of the ensemble is correctly specified,
yet if covariances between model grid points are improperly specified, rank histograms for combinations of
model variables may not be flat. Further, if imperfect observations are used for verification, the observational
errors should be accounted for, otherwise the shape of the rank histogram may mislead the user about the
characteristics of the ensemble. If a statistical hypothesis test is to be performed to determine whether the
differences from uniformity of rank are statistically significant, then samples used to populate the rank histogram
must be located far enough away from each other in time and space to be considered independent.

1. Introduction

The chaotic nature of the atmosphere (Lorenz 1963,
1969, 1982) ensures that errors will grow in any deter-
ministic numerical weather forecast, eventually render-
ing that forecast no better than climatology. It is more
appropriate, then, to envision the goal of numerical
weather prediction as providing information on the rel-
ative likelihood of possible weather scenarios. A prac-
tical way of doing this is through ensemble forecasting
(EF), whereby a set of numerical forecasts are generated
from different initial conditions (Toth and Kalnay 1993,
1997; Molteni et al. 1996; Houtekamer et al. 1996; Hou-
tekamer and Lefaivre 1997), different model physics or
physical perturbations (e.g., Stensrud et al. 2000; Buizza
et al. 1999), different models (Evans et al. 2000; Zieh-
mann 2000; Richardson 2000), and/or using differing
fixed fields and constants (Houtekamer et al. 1996; Hou-
tekamer and Lefaivre 1997). The ensemble is then typ-
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ically used to generate a probabilistic forecast; for ex-
ample, if 20 of 50 ensemble members forecast rain at
a grid point, and if the ensemble is reliable (Wilks 1995),
then the probability of rain may be estimated to be 40%.

How to produce probabilistic forecasts, how to use
them, and how to evaluate them are questions still ac-
tively debated. Our focus here is strictly their evaluation.
The problem is that conventional diagnostics for eval-
uating deterministic forecasts, measures such as ‘‘root-
mean-square error,’’ are not useful with probabilistic
forecasts. At a recent workshop on ensemble forecast-
ing, a suite of useful verification techniques for ensem-
ble forecasts was discussed and a subset suggested for
common use (Hamill et al. 2000a). These techniques
included probabilistic scoring measures such as the Bri-
er score (Brier 1950; Murphy 1973; Wilks 1995), the
ranked probability score (Epstein 1969; Murphy 1971),
and their associated skill scores (Wilks 1995); reliability
diagrams (Wilks 1995) plotted together with a distri-
bution of the frequency of forecasts issued and a de-
composition of the associated Brier score into reliability,
resolution, and uncertainty terms (Murphy 1973); the
relative operating characteristic, or ROC (Swets 1973;
Mason 1982; Stanski et al. 1989); and the rank histo-
gram, also known as the ‘‘Talagrand diagram.’’

The focus of this note is on one of these verification
tools, the rank histogram. The rank histogram was de-
veloped contemporaneously and independently by An-
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derson (1996), Hamill and Colucci (1996, 1997), and
Talagrand (Harrison et al. 1995; Talagrand et al. 1997),
though its inspiration goes back to long-established sta-
tistical ideas such as the Q–Q plot (e.g., Wilks 1995)
and the probability integral transform (e.g., Casella and
Berger 1990). The principle behind the rank histogram
is quite simple. Ideally, one property that is desired from
an EF is reliable probabilities; if ensemble relative fre-
quency suggests P percent probability of occurrence,
the event truly ought to have P probability of occurring.
For this probability to be reliable, the set of ensemble
member forecast values at a given point and the true
state (the verification) ought to be able to be considered
random samples from the same probability distribution.
This reliability then implies in turn that if an n-member
ensemble and the verification are pooled into a vector
and sorted from lowest to highest, then the verification
is equally likely to occur in each of the n 1 1 possible
ranks. If the rank of the verification is tallied and the
process repeated over many independent sample points,
a uniform histogram over the possible ranks should re-
sult.

The rank histogram permits a quick examination of
some qualities of the ensemble. Consistent biases in the
ensemble forecast will show up as a sloped rank his-
togram; a lack of variability in the ensemble will show
up as a U-shaped, or concave, population of the ranks.
Further, the rank histogram may be useful for more than
just evaluating the forecast quality. Hamill and Colucci
(1997, 1998) and Eckel and Walters (1999) also show
how rank histograms provide information that may be
used to recalibrate ensemble forecasts with systematic
errors, thus achieving improved probabilistic forecasts.

While it is common for operational centers to produce
probabilistic forecasts from their ensembles as if the
ensembles were random samples from the same distri-
bution as the truth, in fact many operational centers
construct their ensembles under different assumptions.
For example, the singular vector method used at the
European Centre for Medium-Range Weather Forecasts
(Molteni et al. 1996) generates initial perturbations that
project strongly on the forecast modes where errors
grow most quickly. This constitutes a sort of nonrandom
sample, where the extremes of the forecast probability
density function may be sampled more frequently than
the center of the distribution. The interpretation of rank
histograms under such different sampling strategies is
not clear.

Since the rank histogram is a relatively new tool and
collective experience with it is limited, some initial
guidance is provided on its suggested use. We also ex-
plain some ways in which its uncritical use can lead to
an inaccurate understanding of the characteristics of
EFs. To this end, section 2 provides a general overview
of the rank histogram and its link to other probabilistic
verification tools. Section 3 describes some of the com-
mon problems in the interpretation of rank histograms.
Section 4 describes the manner in which samples should

be generated if one is to perform a formal hypothesis
test of the uniformity of a rank histogram. Section 5
concludes.

2. Overview of the rank histogram

Suppose we are examining an ensemble of forecast
values at a particular point. Assume we have a sorted
n-member ensemble X 5 (x1, . . . , xn) and the true state
V. Because we have an imperfect knowledge of the true
state, we describe it with a probability distribution. This
distribution is calibrated, or ‘‘reliable,’’ if probabilities
indicate the true likelihood of event occurrence. With a
finite-sized ensemble, this will occur if the truth and the
ensemble can be considered samples from the same
probability distribution. If this is the case, then

i
E[P(V , x )] 5 . (1)i n 1 1

Here, E( · ) denotes the expected value and P the prob-
ability. If we define fictional bounding ensemble mem-
bers x0 and xn11 such that P(V , x0) 5 0 and P(V ,
xn11) 5 1, then (1) is equivalent to

1
E[P(x # V , x )] 5 . (2)i21 i n 1 1

Note that the expected value of the probability is the
same for each of the n 1 1 possible ranks relative to
the sorted ensemble.

A rank histogram is found by repeatedly tallying the
rank of the truth relative to an actual distribution of
sorted ensemble forecasts (which may or may not be
calibrated). Let R 5 (r1, . . . , rn11) represent a rank
histogram with n 1 1 possible ranks. The population
of a rank histogram element is determined from

i

r 5 P(V , x ), (3)O j i
j51

where ( · ) denotes the average over a large sample of
statistically independent points. Equation (3) is equiv-
alent to

r 5 P(x # V , x ). (4)j j21 j

In other words, the population of rank j is the fraction
of times when the truth, when pooled with the sorted
ensemble, is between sorted ensemble members j 2 1
and j. Special rules are used for assigning ranks when
many ensemble members have the exact same value as
the verification, as may occur, for example, with no
precipitation forecast and none observed; see Hamill
and Colucci (1997, 1998). Note that the concept of the
rank histogram is quite similar to that of the multi-
category reliability diagram (MRCD; Hamill 1997). In
fact, a diagram analogous to the MCRD can be gen-
erated from a rank histogram by plotting rj (ordi-nSj51

nate) versus j/(n 1 1) (abscissa).
Qualities of the calibration of the ensemble can be
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FIG. 1. Rank histograms where verification is sampled from a N(0, 1) distribution and the ensemble (n 5 25 members) is sampled from a
N(m, s) distribution. The rank of the verification is tallied 10 000 times in each panel.

diagnosed from the shape of rank histograms. Suppose
the ensemble forecast probability distributions errs in
the location (wrongly forecasting the mean) of the dis-
tribution and/or in the scale (wrongly forecasting the
standard deviation). Assume that the true state may be
considered to be randomly drawn from a standard nor-
mal distribution N(0, 1), that is, a distribution with mean
0.0 and standard deviation 1.0. Assume each member
of a 25-member ensemble is randomly drawn from
N(m, s). Figure 1 shows the shape of the resulting rank
histogram for combinations of m and s (only 1m errors
are shown for brevity). When the ensemble samples are

from a distribution with a lack of variability, a U-shaped
rank histogram results. An excess of variability in the
ensemble overpopulates the middle ranks. Bias (1/2)
exessively populates the (left/right) extreme ranks.

The rank histogram, when correctly used and inter-
preted, measures the reliability of the ensemble (Tala-
grand et al. 1997; Hersbach 2000). There is another
desirable property, namely, sharpness. In a calibrated
forecast, sharpness is related to resolution, or the ability
of the forecast to be sorted into subsamples where the
verifying event is different (Wilks 1995). Given two
well-calibrated forecast systems, any rational user
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FIG. 2. Illustration of shape of rank histograms when ensemble
members are selected from one of three different probability distri-
butions other than the truth. (a) Probability distributions from which
truth and ensemble are selected; samples are generated from each of
three distributions with either a bias or excess variability; N(20.5, 1),
N(0.5, 1), and N(0, 1.3). (b) Rank histogram corresponding to (a).
The rank of the verification is tallied 30 000 times (10 000 with re-
spect to each of the three forecast distributions).

would prefer the system that produces the more specific
forecast. The rank histogram does not evaluate resolu-
tion, so it must be used in conjunction with other fore-
cast tools such as the ROC, Brier scores, or ranked
probability scores to generate a more complete picture
of the quality of a probabilistic forecast. Hereafter, we
will focus on how the rank histogram can be used (and
misused) for evaluating reliability. Presumably, the user
will also verify the ensemble with other techniques that
measure resolution.

3. Problems interpreting rank histograms

a. Misdiagnosing ensemble characteristics from
histogram shape

We start by noting that a uniform rank histogram is
a necessary but not sufficient criterion for determining
that the ensemble is reliable. A rank histogram is pop-
ulated with a set of sample points; if the ensemble at
each sample point is reliable, then the resulting rank
histogram should be uniform. However, a uniform rank
histogram provides no guarantee that the ensemble is
reliable at each point used to populate it. Figures 2a,b
illustrates a scenario of how histogram flatness may be
illusory. Assume that there is an ensemble that is fore-
casting the probability distribution incorrectly in one of
three possible ways: the forecast distribution may have
a negative bias, a positive bias, or excessive variability,
depending on the sample point. This is simulated by
assuming the verification is sampled from a N(0, 1) dis-
tribution and the ensemble is sampled with equal like-
lihood from either a N(20.5, 1), a N(0.5, 1), or a
N(0, 1.3) distribution. A relatively uniform rank histo-
gram is achieved, though the ensemble was never sam-
pled from the same probability distribution as the ver-
ification.

Suppose the sampling strategy for generating ensem-
ble members is other than random. For example, sin-
gular vectors (Molteni et al. 1996) are designed to sam-
ple the most rapidly growing structures among the myr-
iad of possible directions in the analysis error proba-
bility distribution. As a rough analogy to ensemble
forecasts from singular vectors, suppose the tails of the
distribution are sampled more frequently than its center.
In such a case, the ensemble distribution can be quite
different from the distribution from which the truth is
sampled, yet a uniform rank histogram may result. Fig-
ures 3a–c illustrate such a nonrandom sampling process
and the rank histogram that results. First, suppose the
truth is a random sample from a N(0, 1) distribution.
However, the ensemble will be generated as a nonran-
dom sample from a N(0, 0.7) distribution, where the tails
of the distribution are more likely to be sampled from
than the center. Such a nonrandom sample is simulated
through the following process. First, generate a random
number X sampled from a N(0, 0.7) distribution. Next,
generate a random number U sampled from a standard

uniform distribution, so that its value is equally likely
to take any value between 0.0 and 1.0. Using the func-
tion I in Fig. 3b, accept the sample X as an ensemble
member only if U , I(X); otherwise, start the process
again [here, I was generated from the normalized ratio
of a N(0, 1) to a N(0, 0.7) distribution]. Consequently,
when the ensemble is generated to simulate such a non-
random sample, the resulting rank histogram can still
be approximately uniform (Fig. 3c).

A related problem is that a rank histogram of any
given shape may be generated in a variety of ways.
Figure 4 shows that a U-shaped rank histogram, typi-
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FIG. 3. (a) Probability distribution from which truth is sampled,
N(0, 1), and ensemble N(0, 0.7). (b) Probability of accepting ensemble
random sample; the random sample X is accepted if a uniform random
number U is generated such that U , I(X ). (c) Rank histogram created
under nonrandom sampling of miscalibrated distribution in (a) using
nonrandom sampling function in (b). Verification rank tallied 10 000
times.

cally thought of as indicating undervariability in the
ensemble, could also indicate that the ensemble is sam-
pling a population with some combination of conditional
biases. Sampling half of the time from an ensemble with
a negative bias and half of the time from an ensemble
with a positive bias can generate a U-shaped rank his-
togram indistinguishable from one created as a result of
undervariability. In general, if the model developer has
reason to believe that the ensemble may perform dif-
ferently under different weather regimes (i.e., different
synoptic situations, regions, seasons, etc.), then it may
be worth generating rank histograms separately for each
regime. If the shape differs from one regime to the next,
this probably indicates conditional biases in the ensem-
ble. Hamill and Colucci (1997, 1998) show, for ex-
ample, that rank histograms from an Eta/Regional Spec-
tral Model ensemble are very differently shaped when
precipitation spread is small (generally, corresponding
to low precipitation amounts) compared to when spread
is large (higher amounts). Spread here refers to the stan-
dard deviation of the ensemble about its mean.

These scenarios illustrate that reliability alone is not
a good metric of forecast quality, and reliability appar-
ently can be achieved even if samples from ensemble
forecasts and the verification are not drawn from the
same distribution. When, then, is reliability as diagnosed
from rank histograms indicative of proper random sam-
pling and when is it not? The results of Gilmour and
Smith (1997) and Smith (1999) suggest that reliability
may be illusory unless it is possible to find a model
state that ‘‘shadows,’’ or follows, the evolution of the
real atmosphere within an error tolerance consistent with
magnitude of analysis uncertainty. If a shadowing tra-
jectory can be found, it can be attributed to be sampled
from the same distribution as the truth. Conversely, if
no model state can be found with this property, then the
ensemble is sampling some other probability distribu-
tion than the one the truth is drawn from, and hence
any noted reliability from a rank histogram may be con-
sidered illusory. Because finding a shadowing model
forecast trajectory is difficult for large dynamical sys-
tems like current weather prediction models, this idea
is just beginning to be explored with operational fore-
casts.

b. Sampling properly in multiple dimensions

To this point it has been assumed that rank histograms
were to be generated by sampling independent points,
and it was noted that if the ensemble were reliable at
each sample point, the rank histogram should be uni-
form. Such an analysis, however, neglects the possibility
that ensemble forecast fields (many variables at many
grid points) should also be reliable in a more highly
dimensional subspace as well. To illustrate this, let us
assume that an ensemble at two adjacent grid points
correctly specifies the variance at each grid point but
incorrectly specifies the covariance between the two.
This might happen, for example, if one were to naively
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FIG. 4. (a) As in Fig. 2a, but where ensemble is selected with equally likely probability from one of
the two biased distributions, a N(21, 1) or N(1, 1) distribution, with the verification tallied 10 000 times
for each distribution. (b) As in (a), but where ensemble forecasts are selected from a probability
distribution with a lack of variability, N(0, 0.69). (c) Rank histogram corresponding to (a). (d) Rank
histogram corresponding to (b). Verification rank tallied 20 000 times.

generate perturbations by adding white noise at every
grid point consistent with the analysis uncertainty, but
neglecting the correlations of errors between grid points.
If variances are correctly specified but covariances are
not, a rank histogram formed from some combination
of the values of two grid points is not necessarily uni-
form (Fig. 5). Practically, thus, it is wise to check the
rank histogram’s uniformity for not only fields such as
geopotential height, but also variables that are related
to its spatial derivatives, such as winds and vorticity. A
practical example of how rank histograms can appear
to be quite different for geopotential, winds, and vor-
ticity is shown in Hamill et al. (2000b; Fig. 8).

Ideas for extending the rank histogram to multiple
dimensions are just beginning to be explored. See Smith
(1999) for details on another possible way of examining
the reliability in a phase space of very many directions,
through use of a diagnostic called the ‘‘minimal span-
ning tree.’’

c. Errors in observations

To this point it has been assumed that verification
samples are error free; consequently, if the ensemble
forecast and verification are sampled from the same dis-
tribution, the rank histogram should appear flat. In prac-
tice, imperfect observations will be used for verification.
Let us assume that observations are unbiased but are
contaminated by noise, be it from instrument error, rep-
resentativeness error, or both. In this case, the effects
of including observational errors on the shape of rank
histograms should be considered (see also Anderson
1996). The problem caused by observational errors is
illustrated in Fig. 6. Here, it is assumed that a 25-mem-
ber ensemble is sampled from a N(0, 1) distribution, and
the verification is created from a random sample from
a N(0, s) distribution added to a random sample from
a N(0, 1) distribution, where s represents the standard
deviation of the observational errors. This models the
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FIG. 5. Illustration of how rank histograms for two grid points with
correlated errors are affected if the correlation is misspecified in the
ensemble. Assume 25-member ensemble is sampled at two grid points
from population with variance of 1.0 but 0.0 covariance between the
grid points. True distribution has 0.5 covariance between grid points.
Rank of verification is tallied 10 000 times. (a) Rank histogram of
variable at first grid point, x1. (b) Rank histogram of variable and
second grid point, x2. (c) Rank histogram of x1 2 x2.

FIG. 6. Rank histograms in presence of observational error. En-
semble sampled from N(0, 1) distribution, observation from N(0, 1)
1 N(0, s) distribution. Verification rank tallied 10 000 times. (a) s
5 0.33, (b) s 5 0.67, (c) s 5 1.00.
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situation where the ensemble and the true state are sam-
pled from the same distribution, but where imperfect
observations are used for verification rather than the
truth. For s K 1, there is little deviation from uniformity
of rank, but as s increases, the extreme ranks become
more highly populated. Obviously, the situation is yet
more complicated if the observations are biased as well.

Since overpopulation of the extreme ranks of a his-
togram are commonly observed in operational ensemble
forecasts, it may be worth determining how much of the
population of these ranks is due to observational errors.
The results of Fig. 6 suggest that if the observational
errors are a significant fraction of the spread in the en-
semble, then rank histograms should not be generated
by ranking the observation relative to the sorted ensem-
ble. Rather, the rank histogram should be generated by
ranking the observation relative to an sorted ensemble
with random observational noise added to each member
(see also Anderson 1996). In this manner, if the ensem-
ble is reliable, the adjusted ensemble and the observa-
tions are presumed to both be sampled from the same
probability distribution. In principle, adding these ran-
dom errors for at least some common observational
types such as raobs should not be very difficult, since
these error statistics have been estimated for data as-
similation purposes.

4. Hypothesis testing for uniformity of rank

Rank histograms will naturally appear somewhat ir-
regular if populated with a relatively small sample; they
look progressively smoother with more and more sam-
ples. If samples used to populate the rank histogram are
independent, then a x2 hypothesis test (Wilks 1995; An-
derson 1996; Hamill and Colucci 1997) may be per-
formed to determine whether or not the distribution for
a given sample size is significantly different from uni-
form. However, the statistical hypothesis test may pro-
duce misleading results if samples have correlated er-
rors, as may happen if two adjacent grid points are both
used as samples. Ideally, the model user thus ought to
have information on the spatial and temporal correlation
of errors for the model being used and the variable being
examined, and the sample points ought to be spaced far
enough apart from each other so as to be reasonably
independent.

The potential problem of correlated samples is dem-
onstrated using the quasigeostrophic (QG) channel mod-
el used for perfect-model ensemble simulations in Ham-
ill et al. (2000b), Hamill and Snyder (2000), and Morss
et al. (2000, manuscript submitted to Quart. J. Roy.
Meteor. Soc.). It is a midlatitude, beta-plane, gridpoint
channel model that is periodic in x (east–west), has im-
permeable walls on the north–south boundaries, and has
rigid lids at the top and bottom. There is no terrain, nor
are there surface variations such as land and water. Pseu-
do–potential vorticity (PV) is conserved except for Ek-
man pumping at the surface, ¹4 horizontal diffusion,

and forcing by relaxation to a zonal mean state. The
domain is 16 000 3 8000 3 9 km; there are 129 grid
points east–west and 65 north–south, and eight model
forecast levels, with additional staggered top and bottom
levels at which potential temperature u is specified. The
grid spacing is 125 km.

It can be shown that there is a rather simple distri-
bution for the expected difference in the verification
ranks between two samples with uncorrelated errors.
Define D as the difference in ranks between the two
samples in an n-member ensemble. The expected value
for the probability P(D) of the difference is

n 1 1 2 |D| , if |D| , (n 1 1)
2P(D) 5 (n 1 1) (5)


0, otherwise.

This equation can be verified in the following manner.
Generate an (n 1 1) 3 (n 1 1) array, and populate each
array element with the row number minus the column
number. The row number represents possible ranks of
the first sample, the column number the ranks of the
second, and the value assigned to a particular element
is the difference in ranks between the two samples.
Count the fraction of array elements with a particular
D and (5) will result by inspection.

We now explore whether different sampling strategies
bring us closer to the desired distribution achieved by
independent samples. To do so, we use the QG model
and the perturbed observation ensemble analysis data
described in Hamill et al. (2000b), shown in that paper
to have approximately uniform rank histograms (in a
perfect-model context). Using this data, the rank of the
truth is determined relative to the sorted ensemble for
model level 4 (;500 hPa) geopotential, u-wind com-
ponent, and pseudo–PV at every model grid point and
every analysis time. We then examined the distribution
of the difference in ranks for various spatial and tem-
poral lags using points in the center ½ of the channel.
Figures 7a–c show the distribution of differences in
ranks for various spatial lags plotted over the top of the
distribution that is expected from (5) assuming uncor-
related data. Geopotential heights are somewhat cor-
related even at a spatial lag of 20 grid points (samples
2500 km apart) whereas PV, with much more small-
scale structure, is nearly uncorrelated by lag 6 (750 km).
Similarly, an analysis was done of the difference in
ranks for various temporal lags (Figs. 8a–c). For col-
located samples with a 1-day lag between samples, there
is a slight correlation for geopotential, wind, and PV;
for 2- and 3-day lags, wind and PV samples are effec-
tively uncorrelated. These results may well differ from
those that would be obtained with a primitive equation
model. Nonetheless, they do illustrate that if the aim of
generating rank histograms is for formal hypothesis test-
ing of uniformity, then samples must often be located
far apart in space and in time, and that the difference
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FIG. 7. Frequency of difference in ranks for samples with spatial
lags of 6, 13, and 20 grid points in QG model, plotted over distribution
expected if samples are uncorrelated. (a) Differences for model level
4 geopotential, (b) differences for U wind component, and (c) dif-
ferences for PV.

FIG. 8. As in Fig. 7, but for frequency of difference in ranks for
samples with temporal lags of 1, 2, and 3 days.

in distance and time may depend on the variable in
question and the model being used.

5. Conclusions

A rank histogram is a tool for evaluating the reli-
ability of ensemble forecasts. Errors in the mean and

spread of the ensemble can be diagnosed with the rank
histogram.

Uncritical use of rank histograms, however, can lead
to misinterpretations of the qualities of that ensemble.
Some potential problems to be cognizant of include the
following.

R A flat rank histogram does not necessarily indicate
reliability of the ensemble. A flat rank histogram can
still be generated from ensembles with different con-
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ditional biases, or by nonrandom sampling of a dif-
ferent probability distribution than that from which
the truth is drawn.

R Flat rank histograms may also indicate that the en-
semble is correctly specifying the variance at a grid
point, but covariances may still be misspecified. This
can be checked somewhat by generating rank histo-
grams for differences between values at different grid
points or by using other diagnostics such as the min-
imal spanning tree.

R A U-shaped rank histogram, commonly understood
as indicating a lack of variability in the ensemble,
can also be a sign of conditional biases. If possible,
rank histograms for subpopulations should be gen-
erated to determine if the shape varies from one to
the next; this can provide some perspective on wheth-
er the U shape indicates conditional biases or un-
dervariability.

R Imperfect observations are commonly used for the
verification value in generating the rank histogram.
Observational errors, if not accounted for, may affect
the shape of the rank histogram; the larger the error,
the more U-shaped the rank histogram will appear,
even if the ensemble is reliable. If observational error
characteristics are known, this can be dealt with by
adding random noise to each ensemble member, con-
sistent with the observational error statistics.

R If a statistical hypothesis test is to be performed to
test for uniformity, then samples used to populate the
rank histogram must be located far enough away from
each other in time and space to be considered inde-
pendent.
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