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ABSTRACT

An ensemble Kalman filter may be considered for the 4D assimilation of atmospheric data. In this paper, an
efficient implementation of the analysis step of the filter is proposed. It employs a Schur (elementwise) product
of the covariances of the background error calculated from the ensemble and a correlation function having local
support to filter the small (and noisy) background-error covariances associated with remote observations. To
solve the Kalman filter equations, the observations are organized into batches that are assimilated sequentially.
For each batch, a Cholesky decomposition method is used to solve the system of linear equations. The ensemble
of background fields is updated at each step of the sequential algorithm and, as more and more batches of
observations are assimilated, evolves to eventually become the ensemble of analysis fields.

A prototype sequential filter has been developed. Experiments are performed with a simulated observational
network consisting of 542 radiosonde and 615 satellite-thickness profiles. Experimental results indicate that the
quality of the analysis is almost independent of the number of batches (except when the ensemble is very small).
This supports the use of a sequential algorithm.

A parallel version of the algorithm is described and used to assimilate over 100 000 observations into a pair
of 50-member ensembles. Its operation count is proportional to the number of observations, the number of
analysis grid points, and the number of ensemble members. In view of the flexibility of the sequential filter and
its encouraging performance on a NEC SX-4 computer, an application with a primitive equations model can
now be envisioned.

1. Introduction

The standard Kalman filter explicitly propagates the
error covariances from one assimilation time to the next.
This expensive computation is approximated in the en-
semble Kalman filter (Evensen 1994) by performing an
ensemble of short-range forecasts. The forecast-error
covariances are calculated directly from the ensemble
when they are needed to assimilate data.

The ensemble Kalman filter technique has been em-
ployed to assimilate data in a number of different con-
texts. For example, Evensen and van Leeuwen (1996)
used it for the assimilation of gridded Geosat data, Ev-
ensen (1997) examined its performance in the context
of the Lorenz equations, and Houtekamer and Mitchell
(1998, hereafter HM) used it to assimilate data into a
quasigeostrophic three-level T21 model. As shown in
HM, the approximation improves as the ensemble size
increases. Furthermore, for linear dynamics, the method
converges to the standard Kalman filter as the number
of ensemble members becomes very large. In recent
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la Recherche en Météorologie, 2121 Route Trans-Canadienne, Dor-
val, PQ H9P 1J3, Canada.
E-mail: Peter.Houtekamer@ec.gc.ca

pilot studies, both Anderson and Anderson (1999) and
Miller et al. (1999) considered generalizations of the
ensemble Kalman filter in which the probability distri-
bution underlying the ensemble is considered to consist
of a sum of distributions rather than of a single Gaussian
distribution. Although good results were obtained, these
nonlinear filtering methods are too computationally de-
manding to be considered for operational atmospheric
data assimilation in the near future.

In an operational application, model error has to be
estimated and accounted for. A way of doing this, in
the context of the ensemble Kalman filter, has recently
been proposed by Mitchell and Houtekamer (2000) in
a follow-up study to HM. Also required for the filter to
be feasible in an operational meteorological environ-
ment is a flexible and computationally efficient analysis
algorithm. The purpose of this paper is to propose and
test such an algorithm.

As will be shown, the algorithm has a number of
desirable properties. (i) It uses ensembles to estimate
flow-dependent forecast-error covariances and does not
require a parameterized multivariate correlation model
of forecast error. (ii) It is independent of the forecast
model, so that any (ensemble of ) forecast model(s), pos-
sibly including sophisticated nonlinear parameteriza-
tions, can be used to generate the ensemble of forecast
fields. (iii) It is able to utilize nonconventional obser-
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vations such as satellite radiances. Such observations
have become an essential component of the available
observation set (Andersson et al. 1994; Derber and Wu
1998; McNally et al. 2000) and their importance is ex-
pected to grow in the future. (iv) It functions reasonably
even if the number of ensemble members is modest.
This is important in an operational context, where one
might be limited to O(100) ensemble members. (v) It
produces spatially smooth analysis increments. Discon-
tinuous analysis increments can be expected to be a
significant source of noise and imbalance (Derber et al.
1991; Cohn et al. 1998). (vi) The proposed algorithm
can efficiently assimilate a large number of observa-
tions. In an operational environment, the number of
available observations may exceed 105 (6-h period)21.
(vii) The proposed algorithm is suitable for parallel
computation. [Some of these properties (in particular,
ii, iii, and implicitly v and vi) overlap with the design
objectives of the Physical-space Statistical Analysis
System (PSAS) described by Cohn et al. (1998) and are
discussed in more detail in section 2 of that paper.]

Recently Keppenne (2000) implemented an ensemble
Kalman filter for a two-layer spectral T100 shallow-
water model to assimilate 2775 gridded observations
per analysis time. To render the algorithm computa-
tionally feasible, it was run on a parallel computer. That
algorithm would become expensive if it were used to
assimilate a significantly larger number of observations
(say, 105) using a fairly small number of processors
(say, 10), as is the operational context at our center.

In the present paper, we address the main weaknesses
of the HM algorithm: its inability to deal efficiently with
a large number of observations and the possibility of
imbalance in the analyses resulting from the imposition
of a cutoff radius. The proposed algorithm, a sequential
ensemble Kalman filter, is described in the next section
and its performance validated in section 3. A parallel
version of the filter is presented in section 4 and its
computational performance in a multiprocessor envi-
ronment is discussed in section 5. Section 6 consists of
a summary and concluding discussion.

2. The algorithm

The algorithm is based on the one described by Ev-
ensen (1994; see also Burgers et al. 1998) as modified
by HM. Its main elements are first presented in terms
of the properties enumerated in section 1. Only the first
six properties are discussed in this section; the seventh,
suitability for parallel computation, will be addressed
in section 4. The presentation begins with the features
inherited from the earlier algorithm.

a. Inherited features

The algorithm uses a pair of ensembles, as in HM,
to deal with a problem of inbreeding. [See van Leeuwen
(1999) and Houtekamer and Mitchell (1999) for further

discussion of this problem.] This strategy allows rep-
resentative ensembles to be maintained even when the
ensemble size is rather small. Let C f and Ca denote
the forecast (i.e., background or first guess) and analysis
vectors, respectively. Here, these are defined on a grid.
The basic analysis equation is [cf. HM Eq. (10)]

5 1 Kj9(di,j 2 H ), i 5 1, . . . , N, (1)a f fC C Ci, j i, j i,j

where all quantities apply at the analysis time and we
assume two N-member ensembles, denoted j 5 1 and
j 5 2. Here, Kj9 represents a Kalman gain, d i,j a set of
perturbed observations, and H the forward interpolation
operator from the first guess to the observations. Here,
j9 represents the ensemble that is complementary to en-
semble j, that is, j9 5 2 for j 5 1 and j9 5 1 for j 5
2. The Kalman gain used for the assimilation of ensem-
ble j is thus computed from the complementary ensem-
ble j9.

The background-error covariances are calculated di-
rectly from the ensembles, as in HM. In particular, the
two terms H T and H T, which occur in the ex-f fP H Pj j

pression for the Kalman gain, are defined as [cf. HM
Eqs. (13)–(15)]

N1T Tf f f f fP H [ (C 2 C )(H C 2 H C ) (2)Oj i, j j i, j jN 2 1 i51

and
N1T Tf f f f fH P H [ (H C 2 H C )(H C 2 H C ) ,Oj i, j j i, j jN 2 1 i51

(3)

where
N N1 1

f f f fC 5 C and H C 5 H C .O Oj i, j j i, jN Ni51 i51

Equation (2) is for the covariances between C and H C,
while (3) is for the covariance of H C with itself.

While H is linear for the observations used in the
current study, it need not be restricted in this way. Since
H is applied to each background field individually (rath-
er than to the covariance matrix , which summarizesfPj

the ensemble statistics), it is possible to use nonlinear
operators. For example, H could be a radiative transfer
model that yields radiances or a convection scheme that
yields precipitation rates, if radiance or precipitation rate
observations were available for assimilation. However,
it should be noted that the Kalman filter equations have
been derived for linear interpolation operators. If the
nonlinearity is large, the improvement due to the cor-
responding observations may be small.

With an ensemble Kalman filter, the first-guess fields,
, are obtained directly by integrating the completefCi,j

(nonlinear) forecast model(s). Letting M i,j denote the
model used to integrate ensemble member i, j, the prop-
agation of the ensemble from time t to time t 1 1 can
be written as
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(t 1 1) 5 M i,j[ (t)].f aC Ci,j i,j (4)

Thus, there is no need for any simplified version of the
forecast model(s) or its (their) physical parameteriza-
tions.

It follows that by basing the algorithm on the earlier
algorithms of Evensen (1994) and HM, we inherit the
first three properties enumerated in section 1.

b. The Schur product and spatial smoothness of the
analysis increments

The finite ensemble size causes the estimated corre-
lations to be noisy (HM, Fig. 6). To filter the small
background-error correlations associated with remote
observations, we follow a suggestion of S. E. Cohn and
R. Ménard (1997, personal communication): we use a
Schur (elementwise) product of the covariances of the
background error calculated from the ensemble and a
correlation function with local support. By the Schur
product theorem (Horn and Johnson 1985, p. 458; Gas-
pari and Cohn 1999), the product function is also a
covariance function. (The Schur product, often called
the Hadamard product, of two matrices A and B is the
matrix C having the same dimension as A and B and
Ci,j 5 Ai,jBi,j.)

More specifically, we define Kj, the Kalman gain cal-
culated from ensemble j by [cf. HM Eq. (11)]

Kj 5 [(r + )H ][H (r + )H 1 R]21,T Tf fP Pj j (5)

where R is the observation-error covariance matrix and
the notation r + B denotes the Schur product of a cor-
relation matrix A with a covariance matrix B. Element
Ai,j is obtained as a correlation function r with local
support applied to the distance in R3 between points xi

and xj. The location xi corresponds to row i of matrix
B and location xj to column j of matrix B. The forward
interpolation H involves operations on vertical columns
of grid points and/or interpolations or finite differences
on the horizontal analysis grid, while r is a relatively
broad function. It follows that the order of the forward
interpolation and the Schur product can be changed, so
that (5) can be approximated by

Kj 5 [r + ( H )][r + ( H ) 1 R]21,T Tf fP H Pj j (6)

where H and H can be calculated from (2) andT Tf fP H Pj j

(3).
Gaspari and Cohn (1999) give a number of examples

of correlation functions with local support. In the pre-
sent study, we define r as a compactly supported fifth-
order piecewise rational function, as given by their Eq.
(4.10). This function is obtained by self-convolution of
a triangular function over R3. The function is isotropic
and decreases monotonically with distance at a rate that
depends on a single length-scale parameter (denoted c
by Gaspari and Cohn). It is important to note that r is
nonzero only for separation distances less than twice
the value of this parameter, a critical distance that we

denote by r1. (Note that we neglect the vertical extent
of the atmosphere when calculating separation distance.
The latter is thus defined as the distance between two
points on the surface of the sphere.) As shown in Fig.
6 of the Gaspari and Cohn paper, the form of r is very
similar to that of a Gaussian (i.e., negative-squared-
exponential) function.

Multiplication of the covariances calculated from the
ensemble by r has several effects. Since r has compact
support, it filters out the small (and noisy) correlations
associated with remote observations. This localization
strategy, like the cutoff radius used in the HM algorithm,
greatly improves the conditioning of the matrices

H and H . Used in conjunction with the con-T Tf fP H Pj j

figuration employing a pair of ensemble Kalman filters,
localization allows the algorithm to function reasonably
even with a modest number of ensemble members (prop-
erty iv). In addition, since r is smooth and monotoni-
cally decreasing, the Schur product tends to reduce and
smooth the effect of those observations at intermediate
distances. The result is smooth analysis increments
(property v), in contrast to those produced by algo-
rithms, like that of HM, which use a cutoff radius.

c. Sequential processing of batches of observations

To avoid the need to store and invert very large ma-
trices when solving the Kalman filter equations, the ob-
servations are organized into batches that are assimi-
lated sequentially. The assimilation of a batch of ob-
servations consists of solving (1) and yields a set of
analysis fields. These analysis fields are then used as
background fields when the next batch of observations
is assimilated. In this way, the original set of first-guess
(forecast) fields gradually evolves as more and more
batches of observations are assimilated. Sequential pro-
cessing of batches of observations is a standard tech-
nique in Kalman filter theory (e.g., Anderson and Moore
1979, pp. 142–146; Brown 1983, pp. 220–222). A par-
ticular case of this strategy, in which the observations
are processed one at a time, has previously been used
in several pilot applications of the Kalman filter to at-
mospheric and oceanic data assimilation (Cohn and Par-
rish 1991; Jiang and Ghil 1993). Sequential processing
of observation batches is strictly valid as long as the
observations whose observational errors are correlated
with each other are processed in the same batch. In this
paper, the observations will be vertical profiles from
either radiosondes or satellites. The observation errors
of different profiles will not be correlated. In section 3,
we will test whether sequential processing of observa-
tions works in the context of the ensemble Kalman filter.

d. Reformulation of the analysis equations

Following Evensen and van Leeuwen (1996) and
Cohn et al. (1998), we rewrite (1) and (6) as
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FIG. 1. Schematic illustration of the strategy used to form batches
of observations. At each assimilation step, the circles denote the
observations to be assimilated at this step, while the x’s denote ob-
servations that have not yet been assimilated.

Tf f[r + (H P H ) 1 R]y 5 d 2 H C ,j9 i, j i, j i, j

i 5 1, . . . , N, and (7)
Ta f fC 5 C 1 [r + (P H )]y ,i, j i, j j9 i, j

i 5 1, . . . , N. (8)

In this formulation, the analysis equation is solved in
observation space and the solutions are then transformed
[in (8)] to the forecast model (i.e., state) space. Note
that the innovation covariance matrix, [r + ( H ) 1TfH Pj9

R], in (7) has order equal to the number of observations
to be assimilated.

Cohn et al. have discussed the advantages of refor-
mulating the analysis equations in this way in their
PSAS algorithm: since the dimension of the observation
space (;105) is about an order of magnitude smaller
than that of the forecast model state, it is computation-
ally more efficient to solve the analysis equation in the
observation space and then transform the solutions, yi,j,
to the forecast model space. This computational saving
is even greater in the context of the sequential algorithm,
where the order of the innovation covariance matrix in
(7) is equal to the number of observations in the current
observation batch and can be controlled.

For each batch of observations, we use a Cholesky
decomposition algorithm to solve (7). The innovation
covariance matrix in (7) has order equal to p, the number
of observations in the current batch. The fact that this
matrix is the same for all N members of ensemble j
implies that the solution of (7) for all of these ensemble
members requires the Cholesky decomposition of only
a single matrix. As in the earlier algorithms of Evensen
(1994) and HM, this results in an important computa-
tional saving as compared to the cost of doing N in-
dependent analyses.

Implemented in this way, the computational cost of
solving (7) becomes incidental. The main computational
cost of the sequential algorithm is incurred in solving
(8). This cost can be significant because of the potential
size of H . This can be a large matrix, since it isTfPj9

n 3 p, where n is the size of the model state vector.

e. Introducing sparseness

Due to the Schur product, we can force sparseness in
the key matrices in (7) and (8) by judiciously choosing
the observations in each batch. This follows from two
facts. (i) Two interpolated trial-field values, which are
located at a distance greater than r1 from each other,
have zero correlation. This fact can be used to impose
sparseness in the innovation covariance matrix in (7).
(ii) If all the observations in a batch are located in the
same region of the globe, then many rows of
r + ( H ) will be identically zero. In particular, thisTfPj9

will be true of all rows corresponding to points of the
analysis grid located farther than r1 from the observation
region. To simultaneously exploit these two facts, a

strategy that involves constructing independent regions
of observations is adopted. This strategy, illustrated in
Fig. 1, will now be described.

Define an integer, pmax, which is the maximum matrix
order that can conveniently be handled by the Cholesky
decomposition algorithm. Define also a distance, r0,
which will determine the maximum areal extent of a
region. Take the first unassimilated observation profile
on the observation file and define its latitude and lon-
gitude to be the ‘‘central point’’ of this new region.
Assign all the observations in this profile to this region.
Scan the observation file for another (unassimilated)
observation profile, which (i) lies within a distance r0

of the central point, and (ii) is such that if all the ob-
servations of this profile were to be added to this region,
the number of observations in the region would not
exceed pmax. If such an observation profile can be found,
add all of its observations to the region. Continue in
this way until no further observation profiles satisfying
i and ii can be found.

The way the algorithm proceeds at this point depends
upon whether or not more than one region is permitted
per batch. If only a single region is permitted, the for-
mation of an observation batch is now complete. On the
other hand, if more than one region is permitted, and
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FIG. 2. The locations of the (a) radiosonde and (b) satellite
observations.

the number formed so far is less than the specified max-
imum, an attempt is made to form further regions with
the intention of combining the observations from these
several regions for simultaneous assimilation in a single
batch. In this latter case, the condition that the central
points of the various regions be at least 2r0 1 2r1 from
each other is imposed, so that when these several regions
are combined, the resulting innovation covariance ma-
trix will be block diagonal with blocks of order at most
pmax.

It may be noted that only those analysis points within
a distance r0 1 r1 of the central point of a region can
be modified by the analysis. For the remaining points,
the background will remain unchanged, as can be seen
from (8). A preliminary identification of those analysis
points, which can be affected by the observations in a
region, and restriction of (8) to those points alone, re-
sults in a considerable computational saving. The size
of the saving diminishes as r0 or r1 increases.

f. Overview of the algorithm

The algorithm begins with a pair of ensembles of
short-range forecasts. These serve as the initial back-
ground fields. The algorithm consists of (i) forming a
batch of observations as described in section 2e, and
(ii) solving (7) and (8) using this batch of observations.
The result is a pair of ensembles of analysis fields. These
analysis fields are then used as background fields for
the assimilation of the next batch of observations and
steps i and ii are repeated. The process is repeated until
all observations have been assimilated. The pair of anal-
ysis-field ensembles produced upon assimilation of the
final batch of observations constitutes the final pair of
analysis ensembles, which is the final output of the al-
gorithm.

3. Validation of the algorithm

The algorithm will be tested in an experimental en-
vironment where its ability to handle a considerable
amount of data can be explored. Only a single data-
assimilation step is performed, so no forecast model is
needed. The experimental environment, which will now
be described, consists of an analysis grid, observations,
and ensembles of first-guess fields.

a. The experimental environment

1) THE ANALYSIS GRID

The analysis will be performed on a 128 3 64 Gauss-
ian grid. For the experiments to be described in this
section, the analysis will be done at three levels: 20,
50, and 80 kPa, as in HM. The analyzed variable is
streamfunction.

2) THE OBSERVATIONS

Observation profiles are obtained from radiosondes
and satellites. Their locations are presented in Fig. 2.
These locations were obtained in a manner very similar
to that described in HM (section 2), except that here we
started with a list of the radiosonde and SATEM (i.e.,
satellite temperature profile) locations utilized by the
operational Canadian Meteorological Centre (CMC)
analysis at 0000 UTC 12 November 1998, a synoptic
time chosen at random. For convenience, each obser-
vation profile was moved to the nearest point of the
analysis grid.

As in HM, radiosondes observe streamfunction and
its horizontal derivatives at each analysis level, while
satellites observe thickness between analysis levels.
There are 542 radiosonde and 615 satellite profiles. For
three analysis levels, these profiles yield 4878 and 1230
observations, respectively.

We use the same observational-error covariance ma-
trices for the various observations as in HM [Eqs. (1)–
(3)]. The observations themselves are simulated by ap-
plying random perturbations to the (known) true state
at the locations of the observations [as in Eq. (6) of
HM]. Without loss of generality, the true state is taken
to be zero in this study. The sets of perturbed obser-
vations to be assimilated into the ensembles of first-
guess fields are generated as indicated in HM [Eq. (9)].
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TABLE 1. The specified values of r0 (km) and pmax, and the resulting
number of batches for the experiments summarized in Fig. 3.

r0 pmax No. of batches

500
2000
5000

25
400

2500

600
69
11

3) ENSEMBLES OF FIRST-GUESS FIELDS

Ensembles of first-guess fields, with a prescribed sta-
tistical form, are generated in a manner that is very
similar to the one used to generate the initial ensemble
of first-guess fields in HM (section 2). Here we use the
(spectral) random-field generator described in Mitchell
and Houtekamer (2000, appendix A). The separable 3D
covariance structure used to generate the random field
realizations is prescribed here by (i) a 3 3 3 vertical
covariance matrix [HM, Eq. (4)], and (ii) a (degenerate)
third-order autoregressive function, that is,

2 2a r
r (r) 5 1 1 ar 1 exp(2ar), (9)0 1 23

where a, the scale parameter, is set to 10 rad21.

b. Experiments

The analysis algorithm is tested, as in HM, by ex-
amining its effect on (i) the difference between the en-
semble mean and the (known) true state, and on (ii) the
ensemble spread. The 50-kPa streamfunction error
squared averaged over the globe is used as a measure
of the error variance.

Using different realizations of the ensembles of back-
ground fields and of the sets of perturbed observations,
many realizations of an analysis ensemble can be pro-
duced. This evaluation technique yields statistically
meaningful results about the data-assimilation algorithm
itself, without requiring that data assimilation cycles be
performed.

1) THE EFFECT OF SEQUENTIAL PROCESSING OF

OBSERVATION BATCHES

Inbreeding, and the nonrepresentativeness that it pro-
duces, seem to be inherent in the ensemble Kalman filter,
as discussed in HM. Even with the configuration with
a pair of ensembles, there is more and more dependence
between the two ensembles of the pair as each batch of
observations is assimilated. Consequently, the sequen-
tial algorithm might be expected to be particularly prone
to inbreeding.

Figure 3 summarizes a series of experiments that were
performed to examine this issue. The left-hand panels
of Fig. 3 show the performance of the sequential al-
gorithm when only a single ensemble (with 16, 32, and
128 members) is used; while each corresponding right-
hand-side panel shows the performance obtained with
a pair of ensembles having the same total number of
ensemble members. Two measures of error are shown
in each panel of Fig. 3: the root-mean-square (rms) dif-
ference between the ensemble mean and the true state
and the rms spread in the ensemble.

For all of these experiments, each batch of obser-
vations was limited to a single region and pmax, the max-
imum number of observations per batch, was taken to

be proportional to the square of r0 (i.e., to the permitted
regional area). The specific values of r0 and pmax that
were used, as well as the number of batches that were
required to assimilate the 6108 available observations,
are given in Table 1. For all experiments, r1, the distance
at which the correlation used in the Schur product falls
to zero, was set to 5000 km. Sixteen realizations of each
experiment were performed. The results of averaging
over these realizations are presented in each panel of
Fig. 3.

The results of Fig. 3 indicate that, in general, the
sensitivity of the analysis error to the size of the ob-
servation batches is rather small, both for a single en-
semble and for a pair of ensembles. While the real anal-
ysis error with the smallest ensembles (upper panels of
Fig. 3) exhibits a small tendency to decrease as the
batch-size increases, this tendency virtually disappears
for the largest ensembles (lowest panels). This is a re-
assuring result given the very large difference in the
number of batches (Table 1) used for the experiments.

A number of other aspects of the algorithm’s behavior
can be discerned from Fig. 3. The single-ensemble re-
sults (left-hand panels of Fig. 3) indicate that with 16
ensemble members (upper panel of Fig. 3) the ensemble
spread very substantially underestimates the ensemble
mean error. As the number of ensemble members in-
creases to 32 and then 128, the ensemble spread is seen
to increase, while the ensemble mean error decreases.
The result is that for the 128-member ensemble, the
discrepancy between the two quantities is significantly
reduced. Use of the configuration with a pair of ensem-
bles (right-hand panels of Fig. 3) produces an ensemble
spread that is much more representative of the error in
the ensemble mean, but at the cost of larger ensemble-
mean errors for a given total number of ensemble mem-
bers. These aspects of the algorithm’s performance are
very much in agreement with the data-assimilation-cy-
cle results presented in Fig. 3 of HM.

With regard to the concern that the sequential algo-
rithm might be particularly prone to inbreeding, the re-
sults of Fig. 3 indicate that, except for the smallest en-
sembles [O(10)], this is not a problem. What exactly
constitutes a ‘‘small’’ or ‘‘large’’ ensemble is context
dependent. For a system with only a few components
and a few observations, one may be able to obtain a
properly functioning filter with ensembles of O(10). For
intermediate problems (e.g., HM or the present three-
level context), a size of O(100) seems to be sufficient.
For higher-dimensional problems (e.g., for mesoscale
analysis), larger ensembles would likely be required.
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FIG. 3. Analysis error as a function of r0 (km), the radius of the search area for observations during the formation
of regions. For these experiments, pmax, the maximum number of observations in a region, is specified to be proportional
to the square of r0. In each panel, the rms error of the ensemble mean is indicated by the solid curve and the rms spread
in the ensemble is indicated by the dashed curve. The left-hand panels are for the single-ensemble Kalman filter
configuration; while the right-hand panels are for the configuration that uses a pair of ensembles. Results for different
ensemble sizes are given in the upper, middle, and lower pairs of panels.
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FIG. 4. Analysis error as a function of r1 (km), the distance beyond which r is zero, for various ensemble sizes.
(left) The rms spread in the ensemble, and (right) the rms error of the ensemble mean.

2) THE EFFECT OF THE SCHUR PRODUCT

The effect of the Schur product is now evaluated by
varying the parameter r1 for various ensemble sizes. For
these experiments, each batch of observations is limited
to a single region and we fix r0 5 2000 km and pmax 5
400. With these parameters fixed, the batches are con-
figured in the same way for all experiments. All the
experiments are done using the configuration with a pair
of ensembles.

The results of averaging the rms analysis error over
the two ensembles of the pair for eight realizations of
these experiments are presented in Fig. 4. An exami-
nation of the error in the ensemble mean (right-hand
panel of Fig. 4) clearly shows the benefits of increasing
the ensemble size, N. In addition, it can be seen in this
panel that (i) for each ensemble size there is an optimal
value of r1 and (ii) this value increases as N increases.
These results are very similar to those shown in Fig. 5
of HM, in which the rms analysis error was plotted, for
various ensemble sizes, against the cutoff radius used
in the HM algorithm. The similarity between the two
figures indicates the similarity between the localizing
roles played here by the correlation function used in the
Schur product and in the earlier algorithm by the cutoff
radius.

The basis of the ensemble Kalman filter methodology
is that the spread among the ensemble members be rep-
resentative of the ensemble mean error. To see to what
extent the current ensembles are representative, we con-
sider the left-hand panel of Fig. 4, where the rms spread
in the ensemble is shown. It can be seen that, for small
distances r1, the curves have a form similar to that ex-
hibited in the right-hand panel of Fig. 4 by the error in
the ensemble mean. A comparison of corresponding
curves in the two panels indicates that, as the ensemble
size increases, pairs of corresponding curves agree out
to larger and larger values of r1. For large values of r1,

we see that as the ensemble size increases, the ensemble
mean error decreases as expected, but the ensemble
spread increases. The same kind of contradictory be-
havior was observed in the left-hand panels of Fig. 3.
It occurs here because, for values of r1 greater than the
earth’s diameter, the correlation function used in the
Schur product does not force a zero correlation even for
points on opposite sides of the globe. The result is that
we effectively obtain one global (nonlocal) analysis
problem. Its dimension is fairly high (since the global
background-error covariance matrix, Pf , has a large
number of significant eigenvalues), so a large ensemble
is needed to avoid the observed inbreeding-like effects.

4. Parallel version of the algorithm

A cluster of NEC SX-4 nodes, each containing up to
32 vector processors, is available at the CMC. Typical
operational jobs exploit a fair number of processors on
one node. To take advantage of the available compu-
tational equipment, a parallel version of the sequential
algorithm has been developed. The code has been writ-
ten in Fortran 77 and employs Message Passing Inter-
face 1 (MPI-1; Gropp et al. 1994; Snir et al. 1996) for
the communication between different processors. A
brief discussion of the NEC SX-4 can be found in Thom-
as et al. (2000).

To make efficient use of this computational environ-
ment, the numerical problem must be subdivided into
a number of almost independent subproblems. The num-
ber of subproblems will be equal to the number of pro-
cessing units and by ‘‘almost independent’’ we refer to
the small amount of data that needs to be exchanged
between the different processors. This amount has to be
small because moving data between processors is slow
compared to performing numerical operations upon
data.
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To assess the relative importance of the different steps
of the algorithm, an analysis of the number of operations
involved has been performed. For the purpose of this
discussion, we define a number of constants. Let Nmodel

be the number of model coordinates (i.e., the number
of state variables needed to describe the background
field of one member of the ensemble) and let Nobs be
the number of observations in the entire observation
file. It is our current expectation that a configuration
with Nmodel ø 106, Nobs ø 105 and an ensemble size of
N ø 102 could yield operationally interesting results.

The most costly computations are those involving the
matrix PH . Its calculation and the subsequent solutionT

of (8) both involve O(NmodelNobsN) operations. Although
exploiting the sparseness of PH leads to a reductionT

by perhaps a factor of 10 in numerical cost, the manip-
ulations involving PH still dominate any other nu-T

merical operations by several orders of magnitude. It is
therefore important that the corresponding parts of the
algorithm parallelize and vectorize particularly well.

a. The term r + (PH )T

At any particular step of the sequential algorithm, the
matrix r + (PH ) has as many rows as there are modelT

coordinates that can be affected by the observations
being assimilated and as many columns as there are
observations being assimilated at this step. In order to
minimize the relative cost of the Cholesky decompo-
sition, the number of observations in each region will
be limited to some small number, say 100–1000. At each
step, then, the matrix r + (PH ) will have a huge numberT

of rows and a fairly modest number of columns. To
parallelize the computation and application of
r + (PH ), it was decided to partition the longest di-T

mension of the matrix, which is for the model coordi-
nate. This will be done by subdividing the model domain
into a number of subdomains, so that different parts of
the model space can be assigned to different processors.
For the current algorithm, with its frequent computation
of correlations of two quantities over the ensemble [Eqs.
(2) and (3)], it did not seem advantageous to assign
different ensemble members to different processors.
Thus, as in Keppenne (2000), all the trial fields for some
specific part of the globe are assigned to a particular
processor.

A strategy is therefore required for subdividing the
model domain in such a way that at each step of the
sequential algorithm, each processor will spend roughly
the same amount of time solving (8). In the context of
atmospheric data assimilation, a subdivision by vertical
level or model variable is undesirable because data-as-
similation codes are organized so that the interpolation
operator H acts on a column containing all model var-
iables. For instance, in the case of radiance observations,
it is necessary to combine temperature and humidity
information from different levels to interpolate to the
observations. It was therefore decided to partition the

horizontal fields into a number of areas in such a way
that each area would have roughly the same number of
grid points.

This is accomplished by partitioning the horizontal
grid using a large number of fairly small tiles. Using 3
3 3 tiles leads to about 900 different tiles for a 128 3
64 horizontal grid, or over 100 tiles per processor for
an eight-processor configuration. The tiles are numbered
sequentially, going eastward in an inner loop and north-
ward in an outer loop. If the number of grid points per
latitude circle is not divisible by 3 (as is the case with
128 longitudes), the extra 1 or 2 longitudes are assigned
to the most easterly tiles. The same procedure is fol-
lowed for the most northerly ring of tiles, if the number
of latitudes is not divisible by 3. The tiles are assigned
one at a time to each processor in turn. This results in,
say, 100 tiles scattered all over the globe being assigned
to each processor. It is likely that information from many
different small tiles will be needed in order to perform
the analysis for a region (as defined in section 2e). This
helps promote a reasonable load balance for the oper-
ations involving r + (PH ).T

Consider now what data exchanges between proces-
sors are necessary for the calculation of r + (PH ). TheT

use of small tiles implies, from (2), that interpolated
values H corresponding to observations located onfCi,j

many different tiles will be required to calculate the
values of r + (PH ) associated with that portion of theT

trial field stored on a single processor. For this reason,
the interpolated values H are exchanged between allfCi,j

processors right after they are calculated. On the other
hand, from (2), no exchange of trial field information
is required for the computation of r + (PH ). It is thusT

not necessary to exchange the haloes of the tiles between
processors as would usually be done in the context of
a dynamical forecast model.

b. Cholesky decomposition

The size of the matrix to which the Cholesky decom-
position is applied can be taken as small as the number
of observations in one sounding. The cost of the Chole-
sky decomposition of a p 3 p matrix is of order p3

(Press et al. 1992, p. 90). There is a need for order
Nobs/pmax decompositions, where pmax is the maximum
number of observations in one region. The total nu-
merical cost of the Cholesky decompositions is thus of
order Nobs (with a multiplicative constant that is pro-
portional to the square of pmax). The subsequent back-
substitution, which needs to be performed once for each
ensemble member, has an operation count of order
NobsN. Although the cost of both operations is relatively
small, there is still some gain to be obtained from par-
allelization. Since a different linear system, (7), is solved
using the Cholesky method for each region and for each
ensemble of the pair, this part of the data assimilation
algorithm will parallelize well if the number of available
processors is equal to twice the number of regions and
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if the number of observations in each region is roughly
constant.

The result of the Cholesky method is an ensemble of
vectors yi, i 5 1, . . . , N. This matrix will have to be
broadcast to all processors so that it can be multiplied
by the matrix r + (PH ). As the number of observationsT

assimilated in one pass is relatively small, as compared
to Nmodel for instance, this amounts to a fairly insignif-
icant amount of data movement.

We note that the calculation of H PH , like that ofT

PH , requires the values of H , the trial field inter-T fCi,j

polated to the observations.

c. Interpolation of trial fields

Every processor receives those observations that are
located on its tiles. For each member of the ensemble
pair, it randomly perturbs each independent component
of each observation profile. This yields an ensemble of
perturbed observations.

The next step is to interpolate the ensemble of trial
fields to the observations using the operator H . The
interpolated trial field values are needed for the com-
putation of PH and H PH and they are broadcast toT T

all processors. We note that for each ensemble member
and each observation, exactly one interpolation needs
to be performed. The total numerical cost is thus of
order NNobs. This is negligible compared to the cost of
computing PH , which is of order NNobsNmodel, unlessT

the interpolation operator is extremely complex.
Observations may, in principle, be located between

grid points that have been assigned to different tiles. In
that case, an extrapolation, requiring values on a single
tile only, must be performed. In this way, H can be
applied to a model state, without requiring the prior
exchange of columns of the trial field between proces-
sors. The percentage of the observations for which ex-
trapolation is required decreases as the size of the in-
dividual tiles increases. However, as we shall see in
section 5c, increasing the size of the tiles tends to be
detrimental to the load balance.

d. Overview of the processing of one batch

To clarify how a single batch of observations is pro-
cessed, we enumerate the main steps of the algorithm:

1) Communicate the characteristics of all observations
to be assimilated in this batch to all processors.

2) Each processor interpolates the trial fields to the ob-
servations that are on its tiles.

3) The interpolated values are communicated to all pro-
cessors.

4) The Cholesky decomposition is performed. The ob-
servations are perturbed and (7) is solved.

5) The vectors yi,j are communicated to all processors.
6) For each region the following steps are done:

(a) copy the parts of the background fields that can

be affected by the observations into a contig-
uous space in memory,

(b) calculate the matrix r + (PH ),T

(c) multiply the matrix r + (PH ) by the set of vec-T

tors yi,j to which it applies as in (8), and
(d) copy the affected parts of the background fields

back to their original locations in memory.

The only one of these steps that requires information
about how the tiling has been done is step 2. For step
6, each processor operates on the grid points that have
been assigned to it as though they were contiguous.
Steps 6a and 6d permit highly optimized matrix mul-
tiplication routines to be used for the full matrices in
steps 6b and 6c.

No communication between processors is required in
step 6. This implies that all operations involving PH T

can be executed without interruption for communica-
tion, leading to a fairly reasonable load balance.

All processors synchronize, that is, wait for each other
to be ready, in steps 1, 3, and 5. It is therefore important
that the work assigned to all requested processors take
approximately the same amount of time and that all
processors be available for the algorithm during the en-
tire execution period.

5. Performance of the parallel algorithm

The parallel algorithm is intended for problems that
are of operational interest. We envision implementing
an ensemble Kalman filter configuration with 100 en-
semble members. Each ensemble member would use
some version of the CMC operational global model
(GEM; Côté et al. 1998a,b) with a 192 3 96 horizontal
grid and 28 vertical levels. This is the resolution cur-
rently used in the CMC ensemble prediction system. In
this section, the prototype algorithm will be used to
predict how much time such an application would take.
We note that the time spent reading the initial trial fields
and writing the final analyses is excluded from these
timings. The extent to which the envisioned configu-
ration itself would be useful is not investigated in this
paper.

a. The experimental environment

To obtain meaningful timings, the size of our problem
must be increased. Working within the same basic ex-
perimental environment as discussed in section 3a, a
convenient way to do this is to increase the number of
vertical levels to 50. The same 542 radiosonde sound-
ings (Fig. 2a), again simulating observations of stream-
function and the two wind components at each level,
then correspond to 81 300 observations. Similarly, the
615 satellite profiles (Fig. 2b) yield 30 135 observations.
There are thus a total of 111 435 observations to be
assimilated.

With 50 levels, a 128 3 64 Gaussian grid, and stream-
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TABLE 2. The performance of the parallel program on a NEC SX-
4 for a pair of 50-member ensembles and different numbers of pro-
cessors. The number of millions of floating point operations per sec-
ond (Mflop s21) is given per processor. The total execution time (s)
is given as real time. The speedup is the speed-gain factor for real
time with respect to the single-processor configuration.

Processors Mflop s21 Real time (s) Speedup

1
2
8

12
16

1767
1700
1522
1401
1371

1450
770
215
158
118

1.00
1.88
6.74
9.18

12.28

function as the only analyzed variable, the number of
model coordinates equals 409 600. This is smaller than
the above-mentioned ‘‘realistic’’ application, which has
four analysis variables at each level (and a surface pres-
sure field), by a factor of 5. Therefore to extrapolate the
timings obtained with the current prototype to the en-
visioned application, we must multiply by a factor of 5.

For the observational-error covariance matrices, we
use diagonal matrices. A diagonal vertical covariance
matrix is also used in the generation of the ensemble
of first-guess fields. This is done for convenience only
and has no impact on the computation times.

The default parameters used for the sequential al-
gorithm will now be specified. For the formation of
observation batches, the parameter r0 is set to 500 km,
the maximum number of observations allowed per re-
gion is set to 300, and a limit of 3 regions per batch is
imposed. Allowing more observations per region causes
the cost of the Cholesky decomposition to increase as
the square of the number of observations per region, as
mentioned in section 4b. Reducing the size of the ob-
servation batches increases the inbreeding effect when
ensemble sizes are small, as discussed in section 3b(1).
In section 5d, we will examine how changing the size
of the observation batches affects the computation
times.

The parameter r1 is set to 4000 km. Smaller values
may have to be used to reduce rank problems associated
with small ensembles, as discussed in section 3b(2).
Larger values of r1 may be selected for very large en-
sembles to reduce imbalance in the analysis increments.
Larger values of r0 or r1 would reduce the imposed
sparseness of PH and would therefore increase the costT

associated with this term, which is proportional to the
square of r0 1 r1. To partition the horizontal grid, 3 3
3 tiles are used as a default configuration. The effect of
increasing the tile size will be examined in section 5c.

b. Speedup

The analysis code has been run with various numbers
of processors, ranging from 1 to 16. For each run, the
same parameters have been used, so in particular for the
case with a single processor, we still used 3 3 3 tiles.
(While in fact there is no reason to introduce tiles with
only one processor.) For an operational application, an
attempt would be made to determine the most suitable
tile size for any given number of processors.

A timing profile (not shown) indicated that for the
case with a single processor about 95% of the time is
spent on the operations involving PH (section 4d, stepT

6). It is encouraging to see such a high percentage be-
cause the algorithm was designed so that the treatment
of this term would vectorize and parallelize particularly
well. The Cholesky decomposition takes only 2% of the
time, but we note that the relative amount of time spent
on this computation can be controlled by allowing more
or less observations per region. We note that for all

experiments with the parallel algorithm, the mean vector
length averaged over all processors exceeded 210. This
is close enough to the machine maximum of 256 to yield
good performance.

Benchmark results, for various numbers of proces-
sors, are shown in Table 2. It can be seen that the single-
processor configuration runs at 1.77 Gflop s21. The op-
timal value on this computer, for an extremely well-
coded algorithm, would be about 2 Gflop s21. For the
case with one processor, only a small improvement on
our current timings could be gained by code optimi-
zation.

It can be seen in Table 2 that the flop rate averaged
over all processors goes down as the number of pro-
cessors increases. This is probably mainly due to the
time required to exchange information between proces-
sors during the algorithm, which may include idle time
when all but one of the processors have to wait until
some specific one has completed its numerical calcu-
lations. The real-time column in Table 2 shows the total
time that was required for the program to be executed
on the computer. This time is evidently smaller when a
larger number of processors is used. With 16 processors,
the program is executed in 118 s. Multiplying by a factor
of 5, gives an estimate of 10 min for the ‘‘realistic’’
application. This is similar to the time traditionally taken
by the operational analysis at the CMC. From Table 2,
we obtain an estimate of 2 h on one processor, which
might be too long. In the speedup column of Table 2
we show by what factor the real time decreased as a
result of using more processors. Ideally the speedup
should equal the number of processors. In fact when we
first tested the software on a different computer that did
not have vector processors, the term PH was even moreT

dominant and we obtained a nearly perfect speedup.
Unfortunately the corresponding real time was unac-
ceptable.

The results in this section, while encouraging in gen-
eral, are specific to the type of computer for which this
code was written and optimized. The benchmark would
have to be redone for any other computational environ-
ment for which the ensemble Kalman filter was being
considered. Nevertheless an underestimate of the real
time for another computer can be obtained by assuming
a computational cost of order NmodelNobsN, considering
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TABLE 3. The load imbalance is quantified for different tile sizes.
For each processor the total number of Gflops was counted. The
lowest and the highest values are listed. A big difference between
these values leads to a longer real time.

Tile size

Gflop count

Lowest Highest Real time (s)

3 3 3
4 3 4
6 3 6
8 3 8

10 3 10
12 3 12

201
202
186
188
151
129

228
214
236
229
282
304

158
152
167
169
251
238

TABLE 4. Effect on the performance of the parallel algorithm of
changing the batch size. All experiments are performed with 4 3 4
tiles and, as in Table 3, with 12 processors. In addition to the lowest
and highest Gflop count, the total number of Gflops (over all pro-
cessors) is also shown. Note that with r0 5 2 km, each region contains
exactly one sounding.

r0 (km)

Obs per
region
(max)

No. of
batches

Gflop count

Lowest Highest Total
Real

time (s)

2
500

1000

150
300

1200

401
218

90

161
202
250

168
214
287

1980.2
2509.3
3169.9

126
152
222

the optimal Gflop rate for that computer and extrapo-
lating from the results in Table 2.

c. Tiling of the sphere

As the tile size increases, it becomes less likely that,
at any step of the sequential algorithm, all processors
will be responsible for a similar number of grid points
that can be affected by the observations being assimi-
lated. In Table 3 we show how the real time increases
when larger tiles are used. All of these experiments were
performed using 12 processors. It can be seen that the
current algorithm has a fairly constant numerical per-
formance for tiles of size 8 3 8 or smaller. Note that
both 128 and 64 are divisible by 8 so that the number
of grid points per processor differs by at most 64 (i.e.,
one tile). For tiles of 10 3 10, the performance of the
algorithm deteriorates substantially and some processors
have to do much more work than others. The Gflop
count for the busiest processor is 282, the most idle one
has a workload of only 151, while the other processors
have Gflop counts that fill in the range between these
two extremes. This imbalance directly translates into a
much increased real time.

We note that the total Gflop count, summed over the
12 processors, had a very nearly constant value of
2509.3 Gflop. This occurs because, when it comes to
calculations involving PH , only those grid points areT

considered that are close enough to the center of a region
that they may be affected. The number of such grid
points is not a function of the size of the tiles.

We remark that the use of small tiles implies that a
relatively large fraction of the observations will be near
the edge of a tile. For these observations, the calculation
of the trial field value at the observation location will
incur an undesirable extrapolation error. The use of larg-
er tiles reduces the fraction requiring extrapolation.
However for larger tiles, more advanced tile-forming
algorithms are desirable so that the load imbalance is
minimized, for example, algorithms that ensure that all
processors are assigned the same number of grid points
or that take account of the observation density when
forming tiles. When a very large number of processors
(say over 100) is being used, load balance problems
may become very serious.

For the assimilation into a fine-mesh model of limb-
sounding data, for example, global positioning system/
meteorology data (Rocken et al. 1997), a different tiling
strategy may have to be adopted because the interpo-
lation operator H would require many columns of trial
field values.

d. Impact of changing the batch size

The effect of changing the size of the observation
batches is illustrated in Table 4. Three different speci-
fications of the batch size parameters are considered.
All experiments are performed with 4 3 4 tiles and, as
in the previous experiments in this section, a limit of
three regions per observation batch is imposed. The
configuration with r0 5 500 km and a maximum of 300
observations per region is the baseline configuration,
for which results have already been shown in Table 3.

As can be seen in Table 4, when r0 is reduced to 2
km, 401 (rather than 218) batches are required to as-
similate the 1157 available soundings. The total number
of floating-point operations decreases by 21% as com-
pared to the baseline configuration. When r0 and the
maximum number of observations per region are in-
creased to 1000 km and 1200, respectively, the number
of batches drops to 90. The total number of floating-
point operations increases by 26%, as compared to the
original configuration.

Most of the observed variation in the number of float-
ing-point operations is due to changes in the sparseness
of PH . As indicated in section 5a, the cost associatedT

with this term is proportional to the square of r0 1 r1.
With r1 5 4000 km, our changes to r0 have the effect
of decreasing this quantity by 21% and increasing it by
23%, as compared to the baseline configuration.

It can be seen that there is an increase in the load
imbalance as the batch size increases. This is largely
due to the increased size of the matrix problem, (7),
associated with larger batches. With a specified maxi-
mum of three regions per batch, at most six (of the 12
available) processors are needed for the Cholesky de-
compositions. The execution times are not strictly pro-
portional to the observed variation in the number of
floating-point operations, due mostly to the increase
with batch size of the load imbalance. Reducing r0 to
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2 km is seen to reduce execution times by 17%, as
compared to the baseline configuration, whereas allow-
ing larger batches increases execution times by 46%.
This confirms the advantages of limiting the size of the
observation batches.

6. Summary and concluding discussion

The ensemble Kalman filter uses the nonlinear fore-
cast model to transport the forecast-error covariances
from one analysis time to the next. It therefore consti-
tutes, not only an approximation to, but also a nonlinear
extension of, the standard Kalman filter. It represents a
promising approach toward the goal of developing a
Kalman filter–based algorithm for atmospheric data as-
similation. However, for the technique to be feasible in
an operational setting, a computationally efficient anal-
ysis algorithm is required. In this paper, we have pro-
posed and tested a prototype having a number of de-
sirable properties (enumerated in section 1). It is based
on the algorithm of Evensen (1994), as modified by HM.
Although that earlier algorithm performed well when
assimilating the approximately 1000 observations avail-
able at each analysis time in HM, it was recognized
there that it ‘‘would become prohibitively expensive if
the data were very dense.’’ Given that in an operational
environment the number of available observations may
exceed 100 000 (6-h period)21, this is a potentially se-
rious problem.

To address this issue, we have exploited the fact that
a properly functioning ensemble Kalman filter produces
representative ensembles not only of the short-range
forecasts (which serve as background fields for the anal-
ysis), but also of the analyses themselves. The ensem-
bles of analyses can provide estimates of the analysis-
error covariances. Therefore if the observations are or-
ganized into batches, we can assimilate the batches se-
quentially, using the analyzed fields resulting from the
assimilation of one batch as background fields for the
assimilation of the next batch. The evolution of the en-
semble of background fields at each step provides a
measure of the improving quality of the background
fields as more and more batches of observations are
assimilated. As shown in Fig. 3, this technique works
very well: the quality of the analysis is found to vary
little, if a given set of observations is partitioned into
say 10 or 600 batches (except when the ensemble is
extremely small).

Sequential processing of batches of observations is a
standard technique in Kalman filter theory. However,
this strategy has not as yet been applicable in operational
atmospheric-data-assimilation algorithms. These algo-
rithms generally employ parameterized representations
of the background (i.e., forecast) error and, in the con-
text of these algorithms, there is no way of updating
the required background-error statistics after a given
batch of observations is assimilated.

The cutoff radius, introduced in HM, eliminated the

need to have to estimate the small correlations associ-
ated with remote observations and alleviated the rank
problem associated with the ensemble Kalman filter.
However, it was likely a source of noise, and in a prim-
itive equations context would likely produce imbalance.
In the current algorithm, localization is achieved in a
different way: we now use a Schur (elementwise) prod-
uct of the covariances calculated from the ensemble and
a correlation function having local support (Gaspari and
Cohn 1999). This filters the small correlations associ-
ated with remote observations and, since the correlation
function is smooth and monotonically decreasing, pro-
duces smooth analysis increments.

The effect of localization is to increase the effective
number of ensemble members. For example, one can
think of a correlation function that has significant am-
plitude only over 10% of the globe as effectively mul-
tiplying the number of ensemble members by a factor
of 10. As shown in Fig. 4 (right-hand panel), for each
ensemble size there is an optimal length scale for the
Schur product correlation function and this optimal
length scale increases as the ensemble size increases.
[Analogous results relating to the cutoff radius were
presented in HM (Fig. 5).] Thus as the number of en-
semble members increases and as the noise in the es-
timate of weak distant correlations diminishes, we can
reduce the effect of the Schur product by increasing the
length scale of the correlation function.

One attractive feature of the ensemble Kalman filter
technique is the possibility of performing the different
ensemble forecasts on different processors, if multiple
processors are available (Evensen 1994). It is important
to realize that in an operational context these time in-
tegrations are not time critical. One can start preparing
the required short-range forecasts as soon as the pre-
ceding analyses are available. In the case of a 6-h data-
assimilation cycle, approximately 4 h might be available
to execute this step. To complement the suitability of
the forecast step for parallel computation, a parallel ver-
sion of the sequential ensemble Kalman filter has been
presented in section 4. Its operation count is propor-
tional to the number of observations, the number of
model coordinates, and the number of ensemble mem-
bers. It yields analyses that are identical regardless of
the number of processors utilized, except for an extrap-
olation of trial field values near the edges of the tiles
assigned to different processors. These extrapolations
could be avoided by using a sequence of three slightly
shifted tilings, where for each tiling only those obser-
vations not requiring extrapolation are assimilated.

A possible alternative parallel algorithm would be one
where the assimilation problem for different grid points
(or grid volumes) is done independently and made fea-
sible by introducing a cutoff radius or another data se-
lection procedure (e.g., HM, Stobie 2000). Because of
the independence, such an algorithm is embarrassingly
parallel and yields a nearly perfect speedup. The data
selection results in a significant saving for operations
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involving PH . However to ensure smooth analyses,T

the matrix problems being solved for neighboring grid
volumes must be almost the same and a fairly large
number of observations must be selected (Cohn et al.
1998; Steinle et al. 1999).

One notable difference that appears when comparing
the ensemble Kalman filter with other Kalman filter im-
plementations (e.g., Lyster et al. 1997) is the way co-
variances are computed. The ensemble Kalman filter
computes covariances directly from the ensemble, using
(2) and (3), when they are required. In practice, the
sequential algorithm only uses fairly small matrices at
any particular time, so that the memory requirement is
fairly modest.

The current algorithm has been developed specifically
for the purpose of performing global, synoptic-scale,
atmospheric analyses at CMC. The dependence of the
results on various tunable parameters of the algorithm
has been examined. Even within the limited scope of
this objective, various choices of these parameters could
be selected depending on external constraints, such as
the available computing time and the acceptable ap-
proximation error. For other data-assimilation applica-
tions and environments, other algorithms may be more
suitable. However, we feel that the current study, as well
as the recent study by Keppenne (2000), strongly sug-
gests that application of the ensemble Kalman filter, with
a realistic model, is now feasible on modern supercom-
puters.

In an operational context, observations valid at a giv-
en time arrive fairly continuously over a period of sev-
eral hours. A cutoff time of, say, 3 h might be allowed
for the receipt of the observations. This suggests that,
if execution of the sequential algorithm begins upon
arrival of the first observations, several hours would be
available for the assimilation. In that case, even the
single-processor configuration would be fast enough for
the currently envisioned 100-member application. Al-
ternatively, using several processors, one could decide
to assimilate a significantly larger volume of remotely
sensed data. In the context of remotely sensed data, it
may be necessary to account for horizontal correlations.
One option would be to sample systematic problems
with the interpolation to the observations by system-
atically using different versions of these interpolation
operators for different ensemble members.

The method used here to evaluate the sequential al-
gorithm did not involve the use of a forecast model.
While this method had the advantage of allowing the
analysis algorithm to be studied in isolation, it required
that we assume an externally prescribed form for the
forecast-error covariances. There is the possibility that
the assumed spectrum may have had an impact on some
aspects of the algorithm’s performance. Also, we were
unable to study issues involving interactions between
the model dynamics and the analysis algorithm, for ex-
ample, the balance of the analysis increments. To in-
vestigate these issues and to study some other remaining

questions, in particular concerning the required ensem-
ble size and the parameterization of model error, we
intend to combine the sequential analysis algorithm with
a primitive equations model.
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