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ABSTRACT  
 
 
We consider the relative advantages of two advanced data assimilation systems, 4D-Var 
and ensemble Kalman filter (EnKF), currently in use or under consideration for 
operational implementation. With the Lorenz (1963) model we explore the impact of 
tuning assimilation parameters such as the assimilation window length and background 
error covariance in 4D-Var, variance inflation in EnKF, and the effect of model errors 
and reduced observation coverage. For short assimilation windows EnKF gives more 
accurate analyses. Both systems reach similar levels of accuracy if long windows are 
used for 4D-Var. For infrequent observations, when ensemble perturbations grow 
nonlinearly and become non-Gaussian, 4D-Var attains lower errors than EnKF. If the 
model is imperfect, the 4D-Var with long windows requires weak constraint. Similar 
results are obtained with a quasi-geostrophic channel model. EnKF experiments made 
with the primitive equations SPEEDY model provide comparisons with 3D-Var and 
guidance on model error and “observation localization”. Results obtained using 
operational models and both simulated and real observations indicate that currently EnKF 
is becoming competitive with 4D-Var, and that the experience acquired with each of 
these methods can be used to improve the other. A table summarizes the pros and cons of 
the two methods.  
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1. Introduction 
 
The data assimilation community is at a transition point, with a choice between 
variational methods, for which there is considerable experience, and ensemble methods, 
which are relatively new. Many centers use 3D-Var (e.g., Parrish and Derber, 1992), 
which is an economical and accurate statistical interpolation scheme that does not include 
the effects of “errors of the day”, although there are several proposed 3D-Var schemes 
that incorporate some aspects of flow-dependent forecast errors (e.g., Riishojgaard, 1998; 
Corazza et al., 2002, http://ams.confex.com/ams/pdfpapers/28755.pdf; De Pondeca et al, 
2006, www.emc.ncep.noaa.gov/officenotes/newernotes/on452.pdf).  Several centers 
(ECMWF, France, UK, Japan, Canada) have switched to 4D-Var (e.g., Rabier et al., 
2000), which requires the development and maintenance of an adjoint model and is 
computationally much more expensive, but which has proven to be significantly more 
accurate than 3D-Var in pre-operational tests leading to their implementation. In addition 
to its demonstrated higher accuracy, 4D-Var was developed and implemented because it 
allows the assimilation of asynoptic data such as satellite radiances at their correct 
observation time, and because further improvements, such as weak constraint 
formulations, could be incorporated later. One of the potentially promising extensions to 
4D-Var is the use of reduced rank Kalman filters to estimate the analysis error 
covariance, but tests in a high resolution NWP system showed no significant benefit 
(Fisher and Hollingsworth, 2004, 
ams.confex.com/ams/84Annual/techprogram/paper_74522.htm). 
 
Research on Ensemble Kalman Filtering (EnKF) started with Evensen (1994), Evensen 
and van Leeuwen (1996), Burgers et al. (1998), and Houtekamer and Mitchell (1998).  
Their methods can be classified as perturbed observations (or stochastic) EnKF, and are 
essentially ensembles of data assimilation systems. A second type of EnKF is a class of 
square root (or deterministic) filters (Anderson, 2001; Whitaker and Hamill, 2002; 
Bishop et al, 2001; see review of Tippett et al, 2003), which consist of a single analysis 
based on the ensemble mean, and where the analysis perturbations are obtained from the 
square root of the Kalman Filter analysis error covariance. Whitaker and Hamill (2002) 
concluded that square root filters are more accurate than perturbed observation filters 
because they avoid the additional sampling error introduced by perturbing the 
observations with random errors, but Lawson and Hansen (2004) suggested that 
perturbed observations filters could handle nonlinearities better than the square root 
filters. The three square root filters discussed by Tippett et al. (2003) assimilate 
observations serially (as suggested by Houtekamer and Mitchell, 2001), which increases 
their efficiency by avoiding the inversion of large matrices. Zupanski (2005) proposed 
the Maximum Likelihood Ensemble Filter where a 4D-Var cost function with possibly 
nonlinear observation operators is minimized within the subspace of the ensemble 
forecasts. A review of EnKF methods is presented in Evensen (2003) and the relationship 
between EnKF and other low-rank Kalman Filters is discussed in Nerger et al. (2005). 
 
Ott et al. (2002, 2004) introduced an alternative square root filter where efficiency is 
achieved by computing the Kalman Filter analysis at each grid point based on the local 
(in space) structure of the ensemble forecasts within a 3D-grid point volume that includes 
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neighboring grid points. The Kalman Filter equations are solved for each grid point using 
as basis the singular vectors of the ensemble within the local volume. This method, 
known as Local Ensemble Kalman Filter (LEKF) allows processing all the observations 
within the local volume simultaneously, and since the analysis at each grid point is done 
independently from other grid points, it allows for parallel implementation. Hunt (2005) 
and Hunt et al. (2007) developed the Local Ensemble Transform Kalman Filter (LETKF) 
using an approach similar to Bishop et al. (2001) but performed locally as in Ott et al. 
(2004). Since the LETKF does not require an orthogonal basis, its computational cost is 
reduced when compared to the original LEKF. In the LETKF localization is based on the 
selection of observations that are assimilated at each grid point rather than on a local 
volume, allowing for more flexibility than the LEKF (Fertig et al., 2007b). Keppenne and 
Rienecker (2002) developed a similar local EnKF for ocean data assimilation. 
 
Hunt et al. (2004) extended EnKF to four dimensions, allowing the assimilation of 
asynchronous observations, a procedure also suggested by Evensen (2003, section 4.6), 
and by Lorenc (2003), that becomes particularly efficient in the LETKF formulation. This 
method (4DEnKF) expresses an observation as a linear combination of the ensemble 
perturbations at the time of the observation. The same linear combination of ensemble 
members can then be used to move the observation forward (or backward) in time to the 
analysis time. This simple method gives the Ensemble Kalman Filter the ability of 4D-
Var to assimilate observations at their right time, but without iterations and allowing the 
use of future observations when available (e.g., within reanalysis). Although 4D-Var 
transports the observations in the subspace of the tangent linear model rather than the 
ensemble subspace, Fertig et al. (2007a) found that 4D-Var and 4D-LETKF yield similar 
results when the 4D-Var assimilation window is sufficiently long, and when the 4D-
LETKF is performed frequently enough.   
 
In the Meteorological Service of Canada, where perturbed observations EnKF was 
pioneered for the atmosphere, preoperational tests indicated that 4D-Var yielded forecasts 
clearly superior to those of 3D-Var, whereas EnKF forecasts were only comparable to 
3D-Var (Houtekamer et al, 2005). Until recently, there was no clear evidence that EnKF 
could outperform an operational 3D-Var analysis, let alone 4D-Var. However, in the last 
year there have been a number of encouraging new results. In an intercomparison 
organized by NCEP, Whitaker et al. (2007) and Szunyogh et al. (2007) showed that the 
application of the Ensemble Square Root Filter (EnSRF) and the LETKF to the NCEP 
global forecasting system (GFS) at resolution T62/L28, using all operationally available 
atmospheric observations (except for satellite radiances), yields better forecasts than the 
operational 3D-Var using the same data. Houtekamer and Mitchell (2006) tested a 
number of changes to the configuration that became operational in 2005 to create the 
ensemble forecasting system initial perturbations. A configuration that included a few 
changes such as increased model resolution, the addition of perturbations representing 
model errors after the analysis (rather than after the forecast), and a 4DEnKF extension, 
yielded a performance of their EnKF comparable to that of 4D-Var, and hence better than 
3D-Var (Peter Houtekamer, pers. comm., 2006).  The next 5-10 years will show whether 
EnKF becomes the operational approach of choice, or 4D-Var and its improvements 
remains the preferred advanced data assimilation method.  
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The purpose of this paper is to compare some of the advantages and disadvantages of 
these two methods based on recent experience. In section 2 we discuss experimental 
results with the very nonlinear Lorenz (1963) model, which although simple, bring up 
several important aspects of practical optimization. Section 3 contains a discussion of the 
characteristics of different approaches of EnKF and the experience acquired 
implementing the Local Ensemble Kalman Filter developed at the University of 
Maryland on a quasi-geostrophic channel model and a low-resolution primitive equations 
model using both perfect model and reanalysis “observations”. It also contains a 
summary of recent results obtained using the LETKF at the University of Maryland and 
with the Earth Simulator of Japan. In section 4 we discuss questions of efficiency, model 
error and nonlinearity, and summarize arguments in favor and against the two methods. 
We conclude by adapting and modifying a table presented by Lorenc (2003) in view of 
these results. 
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2. Exper iments with the Lorenz (1963) model 
 
In this section we compare the performance of 4D-Var, EnKF, and the Extended Kalman 
Filter (EKF). The EKF allows the Kalman filter to be applied to nonlinear models via the 
linear tangent and adjoint models. We follow the classic papers of Miller et al. (1994) and 
Pires et al (1996) and use the Lorenz (1963) model for a simulation of data assimilation. 
This model has only 3 degrees of freedom, so (unlike experiments with realistic models) 
it is possible to implement the Ensemble Kalman Filter at full rank, or even with more 
ensemble members than the size of the model1. Its numerical cost allows tuning the 4D-
Var background error covariance and window length. First, perfect model experiments 
are performed observing all variables over a short interval (8 time steps) during which 
perturbations grow essentially linearly, and over a longer interval (25 time steps) 
allowing perturbations to develop nonlinearly. Then we compare the impacts of 
observing only subsets of variables and of model errors. The results illustrate several 
characteristics of the schemes that in more realistic settings require special attention or 
tuning.  
 
2.1 D-Var: Tuning the window length and background error covariance  
 
In the standard formulation of 4D-Var (e.g., Rabier and Liu, 2003) the analysis is 
obtained by minimizing a cost function 
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computed over an assimilation window of length tN ! t0 , where x0

b is the background or 
first guess at t0 , yi and Ri are vector of observations made at time t

i
 and its 

corresponding observation error covariance, B  is the background error covariance, 
xi = Mi (x0)  is the model state at the observation time ti obtained by integrating the 
nonlinear model Mi ,  and Hi  is the (nonlinear) observation operator at time ti that maps 
model variables to observation variables. The control variable is the model state vector 
x0  at the beginning of the window t0 . This is a strong constraint minimization in which 
the analysis valid at tN is given by the model forecast x

N
= M

N
(x

0
) .  

 
For the first set of experiments all three model variables are observed, so that H and its 
tangent linear operator H are equal to the identity matrix I . In order to obtain the 
minimum of J by iterative methods the most efficient computation of the gradient 
requires the integration of the adjoint model M i

T  (transpose of the linear tangent model 

                                                
1 Evensen (1997) compared for this model a nonlinear solution of the 4D-Var cost 
function minimized over a very long assimilation period (many cycles) using a method of 
gradient descent with a weak constraint, with 1000-member ensembles of Kalman filter 
and Kalman smoother. 
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M
i
). Although M

i
and M i

T are linear with respect to perturbations, they do depend on 
the evolving model state (e.g., Kalnay, 2003, p. 213). The simulated observations contain 
errors in accordance to   R = 2I  as in Miller et al. (1994). The corresponding 
observational error standard deviation ( 2 ), is an order of magnitude smaller than the 
natural variability, and all successful data assimilation experiments have RMS errors 
smaller than this value even with sparse observations. The experiment design consists of 
a perfect model scenario where the initial conditions are chosen as a random state of the 
truth run. The performance of each assimilation experiment is measured using the Root 
Mean Square (RMS) of the difference between the analysis and the true solution. We 
performed experiments assimilating observations of the three variables every 8 time steps 
of length 0.01, and every 25 steps as in Miller et al (1994). The shortest decorrelation 
time scale for the model is about 16 steps, so that during 8 steps perturbations generally 
evolve linearly and there is little difficulty in obtaining an accurate analysis. 25 steps is 
an interval long enough to introduce some nonlinear evolution of perturbations and the 
problems associated with the presence of multiple minima. The corresponding optimal 
3D-Var background error covariances obtained iteratively (Yang et al., 2006) have 
eigenvalues 0.10, 1.11, 1.76 for 8 time steps (a size comparable to that of the 
observational errors), and are an order of magnitude larger for 25 steps (0.67, 9.59, 
14.10).  
 
In order to be competitive with a full rank EnKF, 4D-Var requires longer assimilation 
windows, but this risks introducing the problem of multiple minima (Pires et al, 1996). 
As shown in Table 1, with observations every 8 steps, lengthening the window of 
assimilation reduces the RMS analysis error (at the expense of increased computational 
cost) up to 32 steps. Beyond that, errors become larger because of the problem of 
multiple minima (Miller et al. 1994). This problem can be overcome with the Quasi-static 
Variational Assimilation (QVA) approach proposed by Pires et al. (1996), where short 
windows are used initially and progressively increased to the maximum, while 
performing quasi-static adjustments of the minimizing solution.  
 
Table 1 compares the performance of the assimilation as a function of the assimilation 
window length (either fixing the window, or with the QVA approach). With 8 steps the 
improvement of the analysis RMS errors with window length extends up to a window of 
about 48 steps. For observations every 25 steps, the optimal window length is between 50 
and 125 steps, but the results are strongly sensitive to the choice of background error 
covariance. In operations, if a new analysis is needed every 6 hours, and if the optimal 
window length is a few days, the computation of overlapping windows is required (Fisher 
et al., 2005). 
 
The minimization of (1) requires an estimation of the background error covariance B. If 
4D-Var is started from a 3D-Var analysis, the use of B=B3DV (the optimal 3D-Var 
background error covariance) is a reasonable and widely used estimation. However, if 
4D-Var is cycled, the background x0

b is provided by the 4D-Var analysis x
N

of the 
previous cycle, and after a transient of a few cycles, this background should be more 
accurate than the 3D-Var forecast. Therefore, B should be significantly smaller than 
B3DV. In our experiments we obtained B3DV by iteratively optimizing the 3D-Var data 
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assimilation as in Yang et al. (2006). We also computed the background error covariance 
from the 4D-Var analysis errors (which cannot be done in practice) and found that its 
structure was very similar to that of B3DV with a magnitude about 20 times smaller for the 
case of 25 steps, suggesting that the use in 4D-Var of a covariance proportional to B3DV 
and tuning its amplitude is a good strategy to estimate B. Table 2 shows that tuning the 
amplitude of the background error covariance has a large impact on the results. Similar 
results were obtained with the more complex quasi-geostrophic model of Rotunno and 
Bao (1996) (section 3.1). The ratio of the size of B3DV to the optimal B4DV is larger than 
would be expected in a more realistic model because in a perfect model scenario the 
improvement over 3D-Var obtained using 4D-Var with optimal parameters is larger than 
in the presence of model errors (see sections 2.3 and 3.2).    
 
2.2 Kalman Filter: Formulation and tuning the covariance inflation  
 
4D-Var is next compared with both Extended and Ensemble Kalman Filter, which are 
briefly described here. The Extended Kalman Filter (EKF, e.g., Ide et al, 1997) consists 
of a forecast step,  

   
xn

b = Mn xn! 1

a( )        (2a) 
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n
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n ! 1Mn
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n

      (2b) 
and an analysis step,  

   xn

a
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n
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n
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n

b )       (3a) 

   A n = (I ! K nH)nBn
       (3b) 

where 
  K n

is the Kalman gain matrix given by two equivalent formulations, 
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T (R + HBnH
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= (Bn
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+ H

T
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H)! 1

H
T
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! 1 ,   (4) 
and   A n

 is the new analysis error covariance. Here n denotes the analysis step (in our case 
the analysis is done at the observation time, either 8 or 25 model time steps), 

 
M

n
is the 

nonlinear model that provides the forecast or background   xn
b  at step n starting from the 

previous analysis
   
x

n!1

a , Mn  and M
n

T  are the linear tangent and adjoint models, 
  Bn

is the 
background error covariance at the time of the analysis, and Q

n
is the covariance of the 

model errors (assumed to be zero here). As in the 4D-Var experiments, we used   Hn = I  
and    Rn

= 2I .  
 
The Ensemble Kalman Filter (EnKF) is similar to EKF, the main difference being that an 
ensemble of K forecasts  

   
xn,k

b = Mn xn! 1,k
a( ), k = 1...K       (5a) 

is carried out in order to estimate the background error covariance B
n
.  Defining the 

forecast ensemble mean as xn
b
=
1

K
xn,k

b

k=1

K

! , and Xn
b as the MxK matrix whose columns are 
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the K ensemble perturbations xn,k
b

! xn
b , and M is the dimension of the state vector, then 

Bn =
1

K !1
Xn

bXn
bT .        (5b) 

In the analysis step we used the second formulation in (4) and solved 
I + BnH

TR! 1H"# $%xn
a ! xn

b( ) = BnH
TR! 1 yn ! Hxn

b( )    (6a) 

iteratively to obtain xn
a , the new analysis ensemble mean.  

 
Alternatively, the analysis mean can be obtained from (3a) with 
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where the matrix inversion is performed in the KxK space of the ensemble perturbations. 
 
We used the Ensemble Transform Kalman Filter (ETKF) approach to obtain the analysis 
perturbations (Bishop et al., 2001; Hunt, 2005; Hunt et al., 2007): 
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covariance in the K space of the ensemble forecasts. The new analysis perturbations are 
then obtained from the columns of 
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Since  HX
n,k

b ! Hx
n,k

b ! Hx
n

b ! Hx
n,k

b ! Hxn

b

 and H always appears multiplying a 
perturbation vector or matrix, in EnKF it is possible to use the full nonlinear observation 
operator, without the need for its Jacobian or adjoint (e.g., Houtekamer and Mitchell, 
2001; Evensen, 2003; Lorenc, 2003). 
 
Figure 1 is a schematic representing the characteristics of an EnKF with K ensemble 
forecasts (black circles, K=2 in the schematic). Although the forecasts states have the 
model dimension M, the ensemble lies on an attractor of much lower dimension (dotted 
curve). The ensemble of K<<M forecasts defines the subspace spanned by the 
background error covariance (solid line) of dimension K-1 (denoted “error subspace” by 
Nerger et al., 2005), which is an approximation of the model attractor. Only the 
projection of the observations (crosses) onto the error subspace is assimilated in EnKF. 
The analysis ensemble members (white circles) are also defined within the error 
subspace, i.e., they are linear combinations of the ensemble forecasts obtained using the 
Kalman filter equations in the error subspace. The analysis ensemble mean is the best 
estimate of the analysis, and its spread is the best estimate of the analysis error, so that for 
a given ensemble size, the analysis ensemble provides the optimal initial conditions for 
the next ensemble of forecasts (Ehrendorfer and Tribbia, 1997).   
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Because of nonlinearities, even with a perfect model (Qn = 0 ) both EKF and EnKF 
analyses can drift away from the real solution due to an underestimation of the true 
forecast error covariance. In addition, the EnKF is also affected by the lack of 
representation of the background error covariance outside the subspace defined by the 
ensemble forecasts (Figure 1). Miller et al. (1994) suggested a Monte Carlo approach of 
adding perturbations to avoid the underestimation of the forecast errors in the EKF. 
Similarly, Corazza et al. (2002) found that “refreshing” bred vectors by adding to them 
random perturbations after the analysis solved the related problem that bred vectors tend 
to collapse into a too small subspace (Wang and Bishop, 2003), and improved the 
performance of bred vectors in estimating the “errors of the day”. Yang et al. (2006) 
tested two approaches to avoid “filter divergence” in the EKF. The first one is the 
multiplicative variance inflation suggested by Anderson (2001), in which the background 
error covariance is multiplied by  (1+ !) , and the second method is to enhance the 
analysis error covariance matrix by adding to the diagonal elements random perturbations 
uniformly distributed between 0 and 1, multiplied by a coefficientµ  before performing 
the time integration. With the Lorenz model it was found for EKF multiplicative inflation 
alone did not converge. Here, for the EnKF, we multiplied the background ensemble 
perturbation by (1+δ), equivalent to multiplying the background error covariance by 
(1+δ)2. 
 
In the 4D-Var and EKF formulations for the Lorenz (1963) model, a seemingly minor 
approximation in the adjoint model of keeping the nonlinear model trajectory constant 
within a single time step (without updating it at every substep of the Runge-Kutta time 
scheme) resulted in a substantial deterioration of about 50% in the analysis errors (Yang 
et al., 2006). The Runge-Kutta time scheme, which requires 4 estimations of the time 
derivative per time step, is too expensive to be used in operational applications, so other 
time schemes such as leap-frog are used, and this particular problem does not appear. 
However, it is common to make even stronger approximations of the adjoint by either 
keeping the trajectory constant or interpolating it in time within the adjoint integration. 
The results with the Lorenz model suggest that any approximation to the exact adjoint 
can significantly increase the 4D-Var analysis errors. Since the EnKF method uses 
nonlinear model integrations, it is not affected by this problem, although it still requires 
the use of variance inflation (Anderson, 2001).  
 
Table 3 shows that if the number of ensemble members K is larger than M, the size of the 
model, EnKF becomes more accurate than EKF, but for realistically large models we 
always have K<<M. With a long interval between observations (25 steps) there were 
short episodes of large analysis errors, so that we found useful to perform a “sanity 
check” (Miller et al., 1994). Whenever || y ! Hxb ||was found to be greater than 5, 
indicating that forecast errors were growing faster than suggested by EnKF, the 
background error covariance was taken as the average of the EnKF estimate and B3D-Var. 
This simple “hybrid” approach, which increases the size of the background error 
covariance beyond its EnKF Gaussian estimation when the observational increments are 
unexpectedly large, had a significant positive impact. 
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For short observation intervals (8 steps) EnKF and 4D-Var with long windows and 
optimal B give similar optimal results. However, it is striking that with longer intervals 
(25 steps), the optimal 4D-Var yields significantly lower errors than those that could be 
obtained with a full rank EnKF, even using a hybrid system. This is because the KF 
assumption that forecast perturbations are Gaussian becomes inaccurate when they grow 
nonlinearly (see discussion in section 4.2). Although for linear perfect models KF and 
4D-Var solve the same problem, for nonlinear models the EnKF analysis is still 
constrained to the error subspace (Figure 1), whereas 4D-Var finds iteratively the initial 
condition for a nonlinear forecast that best fits the observations. This advantage of strong-
constraint 4D-Var, which is present even without nonlinear observation operators, 
disappears in the presence of model errors (section 2.3).  
 
So far we presented tests observing all variables. Table 4 shows results obtained when the 
observation coverage is reduced by observing only one or two variables. The impact of 
reduced observations is similar in the 4DVar with optimal window length and in the 
EnKF, but generally 4D-Var is worse than EnKF even with optimal window length. 
 
2.3  Imperfect model experiments 
 
Handling model errors in data assimilation is a subject of considerable current research 
(e.g., Dee and DaSilva, 1998; Dee and Todling, 2000; Tremolet, 2005; Andersson et al., 
2005; Keppenne et al., 2005, Baek et al., 2006; Danforth et al., 2007; Whitaker et al., 
2007a). In the final set of experiments with the Lorenz (1963) model, we allowed for an 
imperfect forecast model, by reducing the parameter r from 28 in the nature run used to 
create the observations, to r=26 in the forecast model. This increases the forecast errors 
by an order of magnitude, and the optimal 3D-Var background error covariance is two 
orders of magnitude larger. 
 
In order to account for model errors, in the 4D-Var experiments we used a weak 
constraint approach as in Tremolet (2005), modifying the cost function (1) by including a 
model bias ! assumed to be constant within the assimilation window: 
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The bias ! shifts the trajectory so that H(xi + !)best fits the observations within each 
assimilation window. We tuned the amplitude of Q , the bias error covariance, by making 
it proportional to the background error covariance, although this may not be optimal 
(Tremolet, 2005). 
 
Several different approaches have been suggested to deal with model errors within EnKF. 
The simplest is to increase the multiplicative inflation (Anderson, 2001), which reduces 
the weight given to the imperfect model compared to the observations. Additive inflation 
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was found to be more effective than multiplicative inflation by Whitaker et al. (2007a). 
Baek et al. (2006) showed how to correct constant model error by augmenting the model 
state with the model bias, and Danforth et al. (2007) proposed a low order approach to 
estimate bias, diurnal and seasonal errors, and state dependent model errors. Li et al. 
(2007) compared these methods on the SPEEDY model. For simplicity, in the 
experiments presented here we only tested increasing the EnKF multiplicative inflation 
discussed in section 1.2 beyond the value needed in a perfect model. 
 
Table 5 (with observations every 8 steps) shows that the RMS analysis error of the EnKF 
in the presence of model errors becomes quite large (1.19), but that increasing inflation, 
although not optimal, reduces the errors substantially (to 0.81). With model errors, strong 
constraint 4D-Var becomes less sensitive to the background error covariance and 
increasing the window only reduces the error very slightly, from 0.84 to 0.83, confirming 
that model errors strongly limit the length of the assimilation window of the 4D-Var 
(Schröter et al., 1993). The introduction of a model bias in the cost function as in (8) has 
little effect for short windows but improves substantially the results for long assimilation 
windows, reducing the RMS error to 0.71 when Q is optimally tuned. Note that with the 
long assimilation window, more observations are available to better define the unbiased 
increment y ! h(xi + " ) , and the 4D-Var results show the benefits after the model 
trajectory is corrected with ! .  In EnKF there is only one set of observation to estimate 
the best analysis state, and multiplicative inflation is not optimal to deal with a state-
dependent bias like this. Despite its simplicity, the inflation method results are an 
improvement, but a more sophisticated strategy that accounts for model error based on 
recent training would be expected to further improve the results. 
 
Table 6 (with observations every 25 steps) indicates that for infrequent observations, 
EnKF with inflation alone gives RMS errors similar to those of strong constraint 4D-Var, 
about 1.04. Increasing the number of ensemble members in EnKF or using weak 
constraint with 4D-Var improves their results to similar levels, and there is no advantage 
to windows longer than 50. 
  
In summary, the three methods are able to reach similar levels of accuracy for the very 
nonlinear Lorenz (1963) system, but each of them requires considerable tuning and 
empirical techniques, such as “sanity checks” and inflation for the Kalman Filter, and 
optimization of B and long windows with the QVA approach for 4D-Var, without which 
the results are significantly worse. In the presence of model errors, weak constraint for 
4D-Var is somewhat more effective than simple multiplicative inflation in EnKF. We 
found that EnKF was the easiest method to implement even for the Lorenz (1963) model, 
because EKF and 4D-Var required the computation of the linear tangent and adjoint 
models using the nonlinear model corresponding to each substep of the Runge-Kutta time 
integration, and because 4D-Var required the estimation of the background error 
covariance.  

 
 

3 Comparisons of EnKF, 3D-Var and 4D-Var in QG and PE models 
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3.1 Quasi-geostrophic channel model 
 
We now present comparisons of 3D-Var (developed by Morss et al. 2000), 4D-Var and 
LETKF, using the Rotunno and Bao (1996) quasi-geostrophic channel model in a perfect 
model set-up. We found that for this model multiplicative inflation alone is not enough to 
prevent filter divergence. Instead, as in Corazza et al. (2002; 2007), random perturbations 
are added after the analysis with a standard deviation of 5% of the natural variability of 
the model. For optimal 4D-Var results, the background error covariance B had to be 
tuned as discussed in the previous section, with an optimal value of about 0.02B3DV. 
 
With simulated rawinsonde observations every 12 hrs, Figure 2 shows that the LETKF is 
more accurate than 4D-Var with 12 hr windows, and comparable with 4D-Var with a 24 
hr window. The advantage that 4D-Var has for longer windows (48 hr) is analogous to 
that observed with the 3-variable perfect Lorenz model. As with the Lorenz model, 
seemingly minor approximations of the adjoint model were found to result in a 
significant deterioration of the 4D-Var results. As noted before with the Lorenz model, 
and in section 3.2, the difference in performance between 3D-Var and the more advanced 
methods, is much larger in perfect model simulations than in real operational 
applications, where the presence of model error is more important than effects such as 
parameter optimization and the accuracy of the adjoint. 
 
These computations were performed on a single processor Alpha EV6/7 617MHz 
computer, with the following wall clock timings for 200 days of simulated data 
assimilation: 3D-Var – 0.5 hours, LETKF - 3 hours, 4D-Var (12 hr window) – 8 hours, 
4D-Var (48hr window) – 11.2 hours. These estimates of the computational requirements 
are not representative of the relative computational costs that would be attainable in an 
operational set up with optimized parallelization, since the LETKF is designed to be 
particularly efficient in massively parallel computers (Hunt et al., 2007).  
 
3.2 Global Primitive Equations model (SPEEDY) 
  
In this subsection we discuss several results obtained by Miyoshi (2005) who developed 
and tested 3D-Var, the EnSRF approach of Whitaker and Hamill (2002), and the LEKF 
of Ott et al. 2004 using the SPEEDY global primitive equations model of Molteni (2003). 
The SPEEDY model has a horizontal spectral resolution of T30 with 7 vertical levels and 
a simple but fairly complete parameterization of physical processes, which result in a 
realistic simulation of the atmospheric climatology. Miyoshi, 2005 first performed 
“perfect model” simulations, and then created realistic atmospheric “soundings” by 
sampling the NCEP-NCAR Reanalysis (Kistler et al., 2001).  
 
3.2.1 Observation localization 
 
It is well known (e.g., Lorenc, 2003), that the main disadvantage of EnKF is that the use 
of a limited (K~100) number of ensemble members inevitably introduces sampling errors 
in the background error covariance B, especially at long distances. Several Ensemble 
Kalman Filters now incorporate a localization of the background error covariance 
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(Houtekamer and Mitchell, 2001) to handle this problem by multiplying each term in B 
by a Gaussian shaped correlation that depends on the distance between points (a Schur 
product suggested by Gaspari and Cohn, 1999). This approach, easy to implement on 
systems that assimilate observations serially (Tippett et al., 2003) has been found to 
improve the performance of the assimilation. In the LEKF/LETKF spurious long distance 
correlation of errors due to sampling are avoided by the use of a region of influence (a 
local volume), beyond which the correlations are assumed to be zero, so that the 
localization has a top-hat and not a Gaussian shape. Miyoshi (2005) found that the LEKF 
performed slightly worse than EnSRF using a Gaussian localization of B. Since in the 
LEKF it is not possible to efficiently localize B with a Schur product, Miyoshi, following 
a suggestion of Hunt (2005), multiplied instead the observation error covariance R by the 
inverse of the same Gaussian, thus increasing the observational error of observations far 
away from the grid point. This has an effect similar to the localization of B and it was 
found that with this “observation localization” the performance of the LEKF became as 
good as that of the EnSRF. Whitaker et al. (2007) obtained similar results when 
comparing EnSRF and LETKF with observation localization. 
 
3.2.2 Model errors 
 
With identical twin experiments (observations derived from a “nature” run made with the 
same model as the forecasts), Miyoshi (2005) obtained EnKF RMS analysis errors much 
lower than those obtained with an optimized 3D-Var. However, when using atmospheric 
“soundings” derived from the NCEP Reanalysis, the advantage of EnKF with respect to 
3D-Var became considerably smaller (Figure 3, full lines). An attempt to apply the 
method of Dee and da Silva (1998) at full resolution to correct for model bias led to filter 
divergence because of sampling problems. Following Danforth et al. (2007), 6 hr model 
errors including the time average and leading EOFs representing the errors associated 
with the diurnal cycle were first estimated. The Dee and da Silva (1998) method was then 
used to estimate the time evolving amplitude of these error fields, thus reducing by many 
orders of magnitude the sampling problem.  
 
Figure 3 compares the geopotential height analysis errors for both 3D-Var and EnKF, 
with (dashed lines) and without (full lines) bias correction. Without bias correction, the 
EnKF (open circles) is only marginally better than 3D-Var (closed circles). With bias 
correction the EnKF (open squares) has a substantial advantage over 3D-Var (closed 
squares). Estimating the amplitude of the bias correction within EnKF (full line with 
triangles) does not improve the results further. Miyoshi (2005) also found that 
assimilating Reanalysis moisture soundings improved not only the moisture, but the 
winds and temperature analysis as well, whereas humidity information is generally 
known to have a low impact on the analysis of other large-scale variables in 3D-Var 
(Bengtsson and Hodges, 2005). This indicates that EnKF provided “tracer” information 
to the analysis, since perfect model simulations confirmed that the improvement observed 
in winds and temperature analysis when assimilating humidity was not due to a reduction 
of the model bias. 
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3.3 Recent LETKF experiments with global operational models 
 
Szunyogh et al. (2005) implemented the LEKF on the NCEP Global Forecasting System 
(GFS) model at T62/L28 resolution in a perfect model set-up, with very accurate 
analyses. It was found that, even with a very small number of observations, the LEKF 
was able to accurately analyze a gravity wave present in the nature run. This suggests that 
the localization of the LEKF/LETKF is apparently able to maintain well the atmospheric 
balance. Szunyogh et al. (2007) have tested the assimilation of real observations with 
encouraging results. Liu et al. (2007) coupled the LETKF with 40 ensemble members on 
a version of the NASA finite volume GCM (fvGCM) and compared the results of 
assimilating simulated rawinsonde observations with those obtained using the NASA 
operational PSAS, a form of 3D-Var computed in observational space (Cohn et al., 
1998). Figure 4, adapted from their study, shows that the globally averaged LETKF 
analysis errors were about 30-50% smaller than those of PSAS.   
 
Miyoshi and Yamane (2007) implemented the LETKF on the Atmospheric GCM for the 
Earth Simulator (AFES) in Japan with a resolution of T159/L48. Figure 5, adapted from 
their study for a perfect model scenario, shows that after a single LETKF analysis step, 
the analysis error decreases with increasing ensemble size, (and saturates at about 320 
members, not shown). After 10 days of data assimilation with LETKF, the saturation with 
respect to the number of ensemble members is faster, taking place at about 80 members, 
and there is less dependence on the number of ensemble members than on whether 
variance inflation is used or not. Figure 6 presents one month of global RMS analysis 
errors for the surface pressure, and confirms that with 80 ensemble members the error is 
close to saturation. Ratios of the analysis error and the analysis spread (not shown) were 
very close to 1, as were the corresponding ratios for the forecasts, suggesting that the 
system is behaving as expected. Tests comparing the current JMA 4D-Var with a 100 
members LETKF ensemble assimilating the operational observations for August 2004 
indicated their results were indistinguishable in the NH and 4D-Var was slightly better in 
the SH.  
 
At the time of this writing, comparisons have been carried out with the NCEP GFS model 
at T62/L28, using NCEP operational 3D-Var (Spectral Statistical Interpolation, SSI, 
Parrish and Derber, 1992), EnSRF and LETKF, assimilating all operational non-radiance 
observations. Results (Whitaker et al, 2007, Szunyogh et al., 2007) indicate that the 
EnKF are similar to each other and superior to the SSI. With the assimilation of radiances 
LETKF was still superior to SSI but the gap between the two methods was reduced  
(Whitaker, pers. comm., 2007).  Tests comparing the operational 4D-Var and an 
experimental LETKF have shown the two methods giving similar results in the NH and 
tropics and 4D-Var having an advantage in the SH. 
 
4 Summary and Discussion 
 
As indicated in the introduction, EnKF is a relatively young area of research in data 
assimilation, and until recently there was no clear evidence that it could outperform an 
operational 3D-Var analysis, let alone 4D-Var. Whitaker et al. (2007) reporting on a 
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comparison between 3D-Var and EnKF organized by NCEP have recently shown for the 
first time that at the resolution of T62/L28 and using the observations operationally 
available at NCEP (except for satellite radiances), their EnSRF and the LETKF yield 
better forecasts than the operational 3D-Var using the same observations. Szunyogh et al. 
(2007) obtained similar results. Houtekamer et al. (pers. comm., 2006) implemented a 
few changes in the Canadian perturbed observations EnKF (including increasing 
resolution, assimilating observations at their right time, and adding the perturbations 
representing model errors after the analysis rather than after the forecast) that resulted in 
an improved performance that became comparable to the operational 4D-Var.  
 
4.1 Efficiency 
 
When the number of observations is low (e.g., without satellite data), the serial EnSRF 
approaches are the most efficient, but they become less efficient when using large 
numbers of satellite observations. The LEKF/ LETKF methods handle this problem by 
assimilating simultaneously all the observations within a local volume surrounding each 
grid point. Perfect model simulation experiments suggest that the number of ensemble 
members needed to estimate the background error covariance using a high resolution 
global model may be less than 100, i.e., comparable to the ensemble size already used in 
operational ensemble forecasting. The 4-dimensional extension (Hunt et al, 2004) 
provides EnKF with one of the major advantages of 4D-Var, namely the ability to 
assimilate asynchronous observations at the right time (but without the need to perform 
iterations). With a perfect model simulation the results of Szunyogh et al. (2005) suggest 
that the volume localization around each grid point does not affect the balance of the 
analysis, to the extent that the analysis is able to reproduce very well not only the 
balanced solution, but also gravity waves present in the integration used as “truth”. The 
wall-clock timings obtained with LETKF and most observations has been found to be of 
the order of 5 minutes both with 40 T62/L28 ensemble members on a cluster of 25 dual 
processor PCs, and with 80 T159/L48 ensemble members using 80 processors on the 
Earth Simulator. 
 
In principle, EnKF should be able to assimilate time-integrated observations, such as 
accumulated rain.  Previous experience with assimilation of rain using nudging indicates 
that the impact of precipitation information tends to be “forgotten” soon after the end of 
the assimilation, presumably because the potential vorticity was not modified during the 
assimilation of precipitation (e.g., Davolio and Buzzi, 2004). Within EnKF the 
assimilation of precipitation may have a longer lasting impact because dynamical 
variables, such as potential vorticity, are modified during the analysis, which is a linear 
combination of the ensemble members (Figure 1), so that an ensemble member that 
reproduces better the accumulated rain will receive a larger analysis weight. On the other 
hand, assimilation of rain within EnKF may suffer from the fact that the rain 
perturbations are very far from Gaussian (Lorenc, 2003), and may require the use of the 
Maximum Likelihood Ensemble Forecasting approach (Zupanski, 2005).  
 
4.2 Model errors and nonlinearity 
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Because until recently there were no examples of EnKF outperforming 3D-Var when 
using real observations, it has been generally assumed that EnKF is much more sensitive 
than 3D-Var or 4D-Var to the problem of model errors. However, recent results from 
Miyoshi (2005) and Whitaker et al. (2007a) suggest that when the model errors are 
addressed even with simple approaches, the advantages of EnKF with respect to 3D-Var 
become apparent. These results agree with those in section 2, where we found that in the 
presence of model errors EnKF with strong inflation gave analysis errors similar to those 
obtained with strong constraint 4D-Var with a short window, but that weak constraint 
4D-Var further reduces analysis errors. Whitaker et al. (2007) found that additive 
inflation outperformed multiplicative inflation in their system, so that their EnSRF with 
the T62L28 version of the NCEP GFS yielded better scores in the northern and southern 
extratropics as well as in the tropics. Houtekamer (2006, pers. comm.) found that adding 
random perturbations representing model errors to the analysis, so that these 
perturbations evolve dynamically during the 6-hour forecast, improved their results. With 
a QG model we also found that additive inflation after the analysis is better than 
multiplicative inflation (section 3.1). Inflation through random perturbations added 
before the model integration is apparently advantageous because it allows the ensemble 
to explore unstable directions that lie outside the analysis subspace and thus to overcome 
the tendency of the unperturbed ensemble to collapse towards the dominant unstable 
directions already included in the ensemble. Multiplicative inflation, by contrast, does not 
change the ensemble subspace. The low-order approach of Danforth et al. (2007) may 
also be advantageous to correct not only biases but also state-dependent model errors. 
 
Currently there is also considerable interest in the development of 4D-Var with weak 
model constraint, i.e., allowing for model errors. Tremolet (2005) obtained very 
encouraging preliminary results, and further comparisons between 4D-Var and EnKF will 
be required when these weak constraint systems are implemented.  
 
Although EnKF does not require linearization of the model, it is still based on the 
hypothesis that perturbations evolve linearly, so that initial Gaussian perturbations (i.e., 
perturbations completely represented by their mean and covariance) remain Gaussian 
within the assimilation time window. It was shown in section 2.2 that the nonlinear 
growth of perturbations has a negative impact on EnKF because the Gaussian assumption 
is violated if the model is very nonlinear or the analysis time window too long (e.g., in 
the Lorenz 63 model when the analysis is performed every 25 time steps). In global 
atmospheric analysis cycles, this assumption is still accurate for synoptic-scale 
perturbations since they grow essentially linearly over 6 hours. However, a data 
assimilation system designed to capture faster processes like severe storms would require 
more frequent analysis cycles. 
 
As for nonlinear observation operators, the computation of differences between nonlinear 
states in observation space (section 2.2) avoids the explicit need for the Jacobian or 
adjoint of the observation operators, but the computation is still linearly approximated. 
The approach of Maximum Likelihood Ensemble Filter (MLEF), introduced by Zupanski 
(2005) is based on the minimization of a cost function allowing for nonlinear observation 
operators (as in 4D-Var) but solving it within the space spanned by the ensemble 
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forecasts. This avoids the linearization of the observation operators while making the 
minimization problem better conditioned than in 4D-Var so that typically only 2-3 
iterations are needed.  
 
4.3 Relative advantages and disadvantages 
 
In summary, the main advantages of EnKF are that: i) it is simple to implement and 
model independent; ii) it automatically filters out, through nonlinear saturation, fast 
processes such as convection that, if exactly linearized, would dominate error growth; 
and iii) it provides optimal initial ensemble perturbations, for a given ensemble size, 
because they represent the analysis error covariance (Ehrendorfer and Tribbia, 1997). 
Since the number of ensemble members required is similar to that used for ensemble 
prediction, the cost of the 6-hour ensemble integration is covered by its use in longer 
ensemble predictions. The main disadvantage of EnKF is the low dimensionality of the 
ensemble, which introduces sampling errors in the estimation of the background error 
covariance. The background covariance localization solves this problem in EnKF when 
observations are assimilated serially. Although this is not computationally feasible in 
local EnKF methods able to handle many observations simultaneously like the LETKF, 
an equivalent approach is a simple “observation localization” where the observations 
error covariance is increased for observations far from the grid point being analyzed 
(Miyoshi, 2005; Hunt et al., 2007).  
 
The main advantages of 4D-Var are its ability to assimilate asynchronous observations, 
(like 4DEnKF) and the fact that, when using a long enough window, its performance 
converges to that of full rank EKF. Fisher et al. (2005) has shown that long-window 4D-
Var with model error is equivalent to a Kalman smoother where the initial guesses for the 
state and forecast error covariance are “forgotten”. He argues that the approach of long 
overlapping windows and weak constraint should be advantageous compared to EnKF, 
because the latter is severely rank-reduced. An additional advantage of 4D-Var is that it 
allows for the assimilation of observations with serially-correlated errors by including 
such time correlations in R. Järvinen et al. (1999) showed that this correlation results in 
less weight given to the mean of the observations (if biased) and more weight to their 
time evolution. However, this time correlation can also be included within the 4DEnKF 
formulation. The main disadvantage of 4D-Var is that it requires the development and 
maintenance of the adjoint model, including special consideration of how to represent 
fast processes (such as convection) that become nonlinear and quickly saturate in the 
nonlinear model. Both methods require additional development of advanced approaches 
to the treatment of model errors, including weak constraint for 4D-Var and efficient 
estimates of state-dependent bias in EnKF. Like 4D-Var, EnKF has a few tuning 
“handles” that need to be explored, including the number of ensemble members, the 
strength and characteristics of the covariance localization, the handling of model errors, 
the use of multiplicative or additive inflation, and its adaptive estimation using 
observational increments. In the next few years more experiments with real observations 
will build up the EnKF experience needed for operational implementation. Fortunately, 
because the problems solved in EnKF and 4D-Var are very closely related, researchers 
can take advantage and share advances made in either method.  
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We conclude the paper by adapting and updating in Table 7 a very useful table of 
advantages and disadvantages from Lorenc (2003), with additions [in brackets] and 
comments (in italics).   
 
 
5 Acknowledgments 
 
We are very grateful to our colleagues from the Chaos/Weather group at the University of 
Maryland, including Profs. B. Hunt, E. Kostelich, E. Ott, I. Szunyogh, J. Yorke, and 
current and former students, including M. Corazza, C. Danforth, E. Fertig, J. Harlim, J. 
Liu, D.J. Patil, who had a strong influence on this research. B. Hunt suggested the 
observation localization method, and F. Molteni provided the SPEEDY model. The 
review and suggestions of Olivier Talagrand significantly improved the original draft of 
the paper, as well as comments from Herschel Mitchell. We have incorporated detailed 
corrections suggested by Nils Gustafsson, although we respond separately to his very 
stimulating and valid comments. The careful and detailed reviews of Erik Andersson and 
an anonymous reviewer significantly improved the paper. 
This research was partially supported by NSF ATM9328402, NASA NNG04GK29G and 
NNG04GK78A and NOAA NA040R4310103. 



 19 

 
6 Refer ences 
 
Anderson, J. L., 2001: An Ensemble Adjustment Kalman Filter for Data Assimilation. 

Mon. Wea. Rev., 129, 2884-2903. 
Andersson, E., M. Fisher, E. Holm, L. Isaksen, G. Radnoti and Y. Tremolet, 2005:  Will the 

4D-Var approach be defeated by nonlinearity? ECMWF Tech Memo 479. Available 
from www.ecmwf.int/publications. 

Bengtsson, L. and Hodges, K. I. 2005. On the impact of humidity observations in numerical 
weather prediction. Tellus 57A, 701-708. 

Bishop, C. H., B. J. Etherton, and S. J. Majumdar, 2001: Adaptive Sampling with 
Ensemble Transform Kalman Filter. Part I: Theoretical Aspects. Mon. Wea. Rev., 
129, 420-436. 

Burgers, G., P. J. van Leeuwen, and G. Evensen, 1998: On the analysis scheme in the 
Ensemble Kalman Filter. Mon. Wea. Rev., 126, 1719-1724. 

Cohn, S.,  Da Silva, A., Guo, J., Sienkiewicz, M., and Lamich, D., 1998: Assessing the 
Effects of Data Selection with the DAO Physical-Space Statistical Analysis 
System.  Mon. Wea. Rev., 126, 2913-2926. 

Corazza, M., E. Kalnay, D.J.Patil, E. Ott, J.A.Yorke, B.R. Hunt, I Szunyogh and M. Cai, 
2002: Use of the breeding technique in the estimation of the background error 
covariance matrix for a quasi-geostrophic model. Paper 6.4 in the AMS 
Symposium on Observations, Data Assimilation and Probabilistic Prediction, 
Orlando, FA, January 14-17 2002. Available from 
ams.confex.com/ams/pdfpapers/28755.pdf.  

Corazza, M., E. Kalnay, D. J. Patil, S.-C. Yang, R. Morss, M. Cai, I. Szunyogh, B. R. 
Hunt, and J. A. Yorke, 2003: Use of the breeding technique to estimate the 
structure of the analysis “error of the day”. Nonlinear Processes in Geophysics, 
10, 233-243. 

Corazza, M., E. Kalnay and S.-C. Yang, 2007: An implementation of the Local Ensemble 
Kalman Filter in a quasigeostrophic model and comparison with 3D-Var. 
Nonlinear Processes in Physics, 14, 89-101.  

Danforth, C. M., E. Kalnay, and T. Miyoshi: Estimating and Correcting Global Weather 
Model Error," Monthly Weather Review, 134, 281-299. 

Davolio, S. and A. Buzzi. 2004: A Nudging Scheme for the Assimilation of Precipitation 
Data into a Mesoscale Model. Weather and Forecasting: Vol. 19, No. 5, pp. 855–
871. 

Dee, D. P. and A. M. da Silva, 1998: Data assimilation in the presence of forecast 
bias. Quart. J. Raoy. Meteor. Soc., 126, 269-295. 

Dee, D.P. and R. Todling, 2000: Data assimilation in the presence of forecast bias: the 
GEOS moisture analysis.Mon. Wea. Rev., 128, 3268-3282. 

De Pondeca, M. S. F. V., Purser, R. J., Parrish, D. F., and Derber, J. C., 2006: 
Comparison of strategies for the specification of anisotropies in the covariances 
of a three-dimensional atmospheric data assimilation system, NOAA/NCEP 
Office Note 452, 13 pp, 2006. Available from 
www.emc.ncep.noaa.gov/officenotes/newernotes/on452.pdf. 



 20 

Derber, J., R. Puser, W-S. Wu, R. Treadon, M. Pondeca, D. Parrish, and D. Kleist, 2003: 
Flow-dependent Jb in grid-point 3D-Var. Available from 
http://www.ecmwf.int/publications/library/ecpublications/_pdf/seminar/2003 
/sem2003_derber.pdf 

Ehrendorfer, M. and J. Tribbia, 1997: Optimal prediction of forecast error covariances 
through singular vectors. J. Atmos. Sci., 54, 286-313. 

Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model 
using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99 (C5), 
10143-10162. 

Evensen, G., and P. J. van Leewen, 1996: Assimilation of Geosat altimeter data for the 
Aghulas current using the ensemble Kalman Filter with a quasi-geostrophic 
model. Mon. Wea. Rev., 124, 85-96. 

Evensen, G., 1997:Advanced data assimilation for strongly nonlinear dynamics. Mon. 
Wea. Review, 125, 1342-1354. 

Evensen, G., 2003: The ensemble Kalman Filter: theoretical formulation and practical 
implementation. Ocen Dyn., 53, 343-367. 

Fertig, E., J. Harlim and B. Hunt, 2007a: A comparative study of 4D-Var and 4D 
Ensemble Kalman Filter: Perfect Model Simulations with Lorenz-96. Tellus, 59, 
96-101.  

Fertig, E., B. Hunt, E. Ott and I. Szunyogh, 2007b: Assimilating nonlocal observations 
with a Local Ensemble Kalman Filter. Tellus, accepted. 

Fisher, M., and A. Hollingsworth, 2004: Evaluation of reduced rank Kalman filters. Paper 
J1.10 of AMS 16th Conference on Numerical Weather Prediction, 84th AMS 
Annual Meeting, Seattle, Wash, January 12-15 2004. Available from 
ams.confex.com/ams/84Annual/techprogram/paper_74522.htm 

Fisher, M., M. Leutbecher and G. Kelly, 2005: On the equivalence between Kalman 
smoothing and weak-constraint four-dimensional variational data assimilation. Q. 
J.R. Meteorol. Soc., 3235-3246.  

Gaspari, G. and S. E. Cohn, 1999: Construction of correlation functions in two and three 
dimensions. Quart. J. Roy. Meteor. Soc., 125, 723-757. 

Houtekamer, P. L. and H. L. Mitchell, 1998: Data Assimilation Using an Ensemble 
Kalman Filter Technique. Mon. Wea. Rev., 126, 796-811. 

Houtekamer, P. L. and Herschel L. Mitchell. 2001: A Sequential Ensemble Kalman Filter 
for Atmospheric Data Assimilation. Monthly Weather Review: Vol. 129, pp. 123–
137. 

Houtekamer, P. L., H. L. Mitchell, G. Pellerin, M. Buehner, M. Charron, L. Spacek, 
and B. Hansen, 2005: Atmospheric Data Assimilation with an Ensemble Kalman 
Filter: Results with Real Observations. Mon. Wea. Rev., 133, 604-620. 

Houtekamer, P. L. and H. L. Mitchell, 2005: Ensemble Kalman filtering. Q. J. Roy. Met. 
Soc., 131, 3269-3290. 

Hunt, B. R., 2005: An efficient implementation of the Local Ensemble Kalman Filter. 
http://arxiv.org/abs/physics/0511236 . 

Hunt, B. R., E. Kalnay, E. J. Kostelich, E. Ott, D. J. Patil, T. Sauer, I. Szunyogh, J.A. 
Yorke and A. V. Zimin, 2004: Four-dimensional ensemble Kalman filtering. 
Tellus, 56A, 273-277. 

Hunt, B. R., E. J. Kostelich and I. Szunyogh, 2007: Efficient data assimilation for 



 21 

spatiotemporal chaos: a Local Ensemble Transform Kalman Filter. Physica D, in 
press. 

Ide, K., P. Courtier, M. Ghil and A. Lorenc, 1997: Unified notation for data assimilation: 
operational, sequential and variational. J. Meteor. Soc. Japan, 75, 181-189. 

Järvinen, H., E. Andersson and F. Bouttier, 1999: Variational assimilation of time 
sequences of surface observations with serially correlated errors, Tellus, 51A, 
469-488. 

Kalnay, E., 2003: Atmospheric modeling, data assimilation and predictability. 
Cambridge University Press, Cambridge, 341 pp. 

Keppenne, C. and Rienecker, H. 2002. Initial testing of a massively parallel ensemble 
Kalman filter with the Poseidon isopycnal ocean general circulation model. Mon. 
Wea. Rev. 130, 2951– 2965. 

Keppenne, C., M. Rienecker, N. Kurkowski and D. Adamec, 2005: Ensemble Kalman 
Filter assimilation of temperature and altimeter data with bias correction and 
application to seasonal prediction. Nonlinear Processes in Geophysics, 12, 491-
503. 

Kistler, R., E. Kalnay, W. Collins, S. Saha, G. White, J. Woollen, M. Chelliah, W. 
Ebisuzaki, M. Kanamitsu, 2001: The NCEP-NCAR 50-Year Reanalysis: Monthly 
Means CD-ROM and Documentation. Bull. Amer. Meteor. Soc., 82(2), 247-267.  

Lawson, W. G. and J. A. Hansen, 2004: Implications of stochastic and deterministic 
filters as ensemble-based data assimilation methods in varying regimes of error 
growth. Mon. Wea. Rev., 132, 1966-1981. 

Li, Hong, E. Kalnay, T. Miyoshi and C. Danforth, 2007: Ensemble Kalman Filter in the 
presence of model errors. Available from 
http://ams.confex.com/ams/pdfpapers/120175.pdf 

Liu, J., E. Fertig, H. Li, E. Kalnay, B. Hunt, E. Kostelich, I. Szunyogh, and R. Todling, 
2007: Comparison between Local Ensemble Transform Kalman Filter and PSAS 
in the NASA finite volume GCM: perfect model experiments. Available from  
http://arxiv.org/ftp/physics/papers/0703/0703066.pdf.  

Lorenc, A. C., 2003: The potential of the ensemble Kalman filter for NWP – a 
comparison with 4D-Var. Quart. J. Roy. Meteor. Soc., 129, 3183-3203.  

Lorenz, E., 1963: Deterministic Non-periodic Flow, J. Atmos. Sci., 20, 130 - 141. 
Miller, R., M. Ghil, and F. Gauthiez, 1994: Advanced data assimilation in strongly 

nonlinear dynamical systems, J. Atmos. Sci., 51, 1037-1056. 
Miyoshi, T., 2005: Ensemble Kalman filter experiments with a Primitive-Equation global 

model. Doctoral dissertation, University of Maryland, College Park, 197pp. 
Available at https://drum.umd.edu/dspace/handle/1903/3046. 

Miyoshi, T. and S. Yamane, 2007: Local ensemble transform Kalman filtering with an 
AGCM at a T159/L48 resolution. Mon. Wea. Rev., in press.  

Molteni, F., 2003: Atmospheric simulations using a GCM with simplified physical 
parameterizations. I: model climatology and variability in multi-decadal 
experiments. Clim. Dyn., 20, 175-191. 

Morss, R. E., K. A. Emanuel and C. Snyder, 2001: Idealized adaptive observations 
strategies for improving numerical weather prediction. J. Atmos. Sci., 58, 210-
234. 



 22 

Nerger, L. W. Hiller and J. Scroeter, 2005: A comparison of error subspace Kalman 
filters. Tellus, 57A, 715-735. 

Ott, E., B. R. Hunt, I. Szunyogh, A. V. Zimin, E. J. Kostelich, M. Corazza, E. Kalnay, D. 
J. Patil, and J. A. Yorke, 2002: Exploiting local low dimensionality of the 
atmospheric dynamics for efficient Kalman filtering. ArXiv:archive/paper 
020358, http://arxiv.org/abs/physics/020358. 

Ott, E., B. R. Hunt, I. Szunyogh, A. V. Zimin, E. J. Kostelich, M. Corazza, E. Kalnay, D. 
J. Patil, and J. A. Yorke, 2004: A local ensemble Kalman filter for atmospheric 
data assimilation. Tellus, 56A, 415-428. 

Parrish, D. F. and J. C. Derber, 1992: The National Meteorological Center’s Spectral 
Statistical-Interpolation Analysis System. Mon. Wea. Rev., 120, 1747-1763. 

Pires, C., R. Vautard and O. Talagrand, 1996: On extending the limits of variational 
assimilation in chaotic systems. Tellus, 48A, 96-121. 

Rabier, F., Jarvinen, H., Klinker, E., Mahfouf, J.-F. and Simmons, A., 2000: The 
ECMWF operational implementation of four-dimensional variational physics. Q. 
J. R. Meteorol. Soc., 126, 1143-1170. 

Rabier, F. and Z. Liu, 2003: Variational assimilation: theory and overview.  
Available at http://www.ecmwf.int/publications/library/ecpublications 
/_pdf/seminar/2003/sem2003_rabier.pdf  

Riishojgaard, L.-P, 1998: A direct way of specifying flow-dependent background error 
correlations for meteorological analysis systems. Tellus 50A, 42-57. 

Rotunno, R. and Bao, J. W., 1996: A case study of cyclogenesis using a model    
hierarchy. Mon. Wea. Rev., 124, 1051-1066.   

Schröter, J., U. Seiler and M. Wenzel, 1993: Variational assimilation of Geosat into an 
eddy-resolving model of the Gulf Stream extension area, J. Phys. Ocean., 23, 925-
953.  

Szunyogh, I., E. J. Kostelich, G. Gyarmati, D. J. Patil, B. R. Hunt, E. Kalnay, E. 
Ott, and J. A. Yorke, 2005: Assessing a local ensemble Kalman filter: Perfect 
model experiments with the NCEP global model. Tellus, 57A, 528-545. 

Szunyogh, I., E. Kostelich, G. Gyarmati, E. Kalnay, B. R. Hunt, E. Ott, E. Satterfield, and 
J. A. Yorke, 2007: Assessing a local Ensemble Kalman Filter: Assimilating Real 
Observations with the NCEP Global Model. Under revision in Tellus. 

Tippett, M. K., J. L. Anderson, C. H. Bishop, T. M. Hamill, and J. S. Whitaker, 2003: 
Ensemble Square Root Filters. Mon. Wea. Rev., 131, 1485-1490. 

Tremolet, Yannick, 2005: Accounting for an imperfect model in 4D-Var. ECMWF Tech 
Memo #477. Available from www.ecmwf.int/publications. 

Wang, X., and C. H. Bishop, 2003: A comparison of breeding and ensemble  
 transform Kalman filter ensemble forecast schemes. J. Atmos. Sci., 60,1140-  

1158.  
Whitaker, J. S. and T. M. Hamill, 2002: Ensemble Data Assimilation without Perturbed 

Observations. Mon. Wea. Rev., 130, 1913-1924. 
Whitaker, J. S., T. M. Hamill, X. Wei, Y. Song and Z. Toth, 2007: Ensemble Data 

Assimilation with the NCEP Global Forecast System. Mon. Wea. Rev., under 
revision, available from .  

Yang, S-C., M. Corazza, A. Carrassi, and E. Kalnay, 2007: Comparison of ensemble-
based and variational-based data assimilation schemes in a quasi-geostrophic 



 23 

model. AMS 10th Symposium on Integrated Observing and Assimilation Systems 
for the Atmosphere, Oceans, and Land Surface. Available from 
http://ams.confex.com/ams/pdfpapers/101581.pdf . 

Yang, S-C., D. Baker, H. Li, M. Huff, G. Nagpal, E. Okereke, J. Villafañe, E. Kalnay and 
G. Duane, 2006: Data assimilation as synchronization of truth and model: 
experiments with the 3-variable Lorenz system. J. Atmos. Sci. 63, 2340-2354.  

Zupanski, M., 2005: Maximum likelihood ensemble filter: theoretical aspects. Mon. Wea. 
Rev. 133, 1710-1726. 



 24 

Tables 
 
Table 1: Impact of the window length on the RMS Analysis error for 4D-Var when x, y, z 
are observed every 8 or 25 steps (perfect model experiments). 
 
Obs./ 8 steps Win=8 16 24 32 40 48 56 64 72 
Fixed window 0.59 0.51 0.47 0.43 0.62 0.95 0.96 0.91 0.98 

QVA (starting with short 
window)  

0.59 0.51 0.47 0.43 0.42 0.39 0.44 0.38 0.43 

 
Obs./ 25 steps Win=25 50 75 100 125 150 
Fixed window 0.71 0.86 0.94 1.22 1.58 2.11 

QVA (starting with short 
window)  

0.71 0.62 0.62 0.62 0.62 0.80 

 
 
 
 
 
 
 
 
 
 
Table 2: Impact of tuning the background error covariance by reducing the size of the 
covariance obtained for 3D-Var but retaining its structure (perfect model experiments). 
Observations and analyses are made every 8 steps (top) and 25 steps (bottom).  B=∞ 
corresponds to not including the background term in the cost function. 
 
 
Win=8 B=∞ B3DV 0.5B3DV 0.4B3DV 0.3B3DV 0.2B3DV 0.1B3DV 0.05 B3DV 
RMSE 0.78 0.59 0.53 0.52 0.50 0.51 0.65 >2.5 
 
Win=25 B=∞ B3DV 0.5B3DV 0.05B3DV 0.03B3DV 0.02B3DV 0.01B3DV 0.005B3DV 
RMSE 0.75 0.71 0.69 0.56 0.54 0.53 0.58 >3 
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Table 3: Comparison of the RMS error in perfect model experiments obtained observing 
x, y and z every 8 steps and every 25 steps, using EnKF with 3 or 6 members and optimal 
inflation factors, and EKF with optimal random and inflation factors (from Yang et al., 
2005). The best results obtained with 4D-Var optimizing simultaneously the window 
length and the background error covariance, are also included. The best results obtained 
with 3D-Var are 0.64 and 1.02 for observations every 8 and 25 steps respectively (Yang 
et al. 2006). 
 
 
a) Observations and analysis every 8 time steps 
EnKF, 3 
Members 

EnKF, 6 
members 

EKF from 
Yang et al (2005) 

Optimal 4D-Var 
(W=Window) 

0.30  
(δ =0.04) 

0.28 
(δ=0.02) 

 0.32 
( µ =0.02, δ =0) 

 
0.31 (W=48) 

b) Observations and analysis every 25 time steps 
EnKF, 3 
members 

EnKF, 6 
members 

EKF from 
Yang et al (2005) 

Optimal 4D-Var 
(W=Window) 

0.71 (δ =0.39) 
0.61 (hybrid + 
δ =0.12) 

0.59 (δ =0.13) 
0.55 (hybrid, + 
δ =0.04) 

0.63 
( µ =0.1, δ =0.05) 

 
0.53 (W=75) 

 
 
 
 
 
 
 
Table 4: Comparison of EnKF and 4D-Var with different subsets of variables observed 
every 8 steps (perfect model experiments). 
 
RMS Obs. type)  EnKF (inflation) 4D-Var (Window=8) 4D-Var (Optimal Window~48) 

x 0.82     (.05) 1.10     (0.3 B3DVAR) 0.84     (0.15 B3DVAR) 
y 0.49     (.02) 0.75     (0.3 B3DVAR) 0.49     (0.07 B3DVAR) 
z >5 >5 >5 

x, y 0.39     (.03) 0.61     (0.3 B3DVAR) 0.42     (0.08 B3DVAR) 
x, z 0.41     (.05) 0.77     (0.2 B3DVAR) 0.44     (0.03 B3DVAR) 
y, z 0.31     (.03) 0.58     (0.2 B3DVAR) 0.35     (0.04 B3DVAR) 

x, y, z 0.30     (.04) 0.50     (0.3 B3DVAR) 0.31     (0.04 B3DVAR) 
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Table 5: Comparison of EnKF and 4D-Var with complete observations every 8 steps but 
using an imperfect model (the parameter r is 28 in the nature run and 26 in the forecast 
model).  B is the 3D-Var background error covariance. 
 
EnKF, 3 ensemble members, no hybrid, 8 steps observations  
Inflation coeff. 0.1 0.2 0.3 0.4 0.5 0.6 0.7 
RMS 1.19 0.97 0.89 0.83 0.81 0.81 0.81 
 
Strong constraint 
4D-Var 100B 10B B 0.1B 0.01B 
Win=8 0.84 0.84 0.84 0.84 0.87 
Win=16 0.83 0.83 0.84 0.87 0.93 
Win=24 0.93 0.93 0.93 0.96 0.99 
Win=32 1.01 1.01 1.01 1.02 1.03 
Weak constraint 
4D-Var Q=0.001B Q=0.005B Q=0.01B Q=0.05B Q=0.1B Q=0.5B 
Win=8 0.84 0.83 0.83 0.87 0.92 1.05 
Win=16 0.81 0.77 0.75 0.81 0.87 1.00 
Win=24 0.87 0.76 0.73 0.79 0.84 0.93 
Win=32 0.91 0.75 0.71 0.77 0.80 0.90 
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Table 6: As Table 5, but with observations every 25 steps.  
 
 
EnKF, 3 ensemble members, no hybrid, 25 steps observations 
Inflation coeff. 0.1 0.2 0.5 0.7 0.9 0.97 1.0 
RMS 2.84 2.02 1.26 1.13 1.07 1.04 1.06 
 
EnKF, 6 ensemble members, no hybrid, 25 steps observations 
Inflation coeff 0.1 0.2 0.5 0.7 0.9 0.98 1.0 
RMS 1.61 1.16 0.99 0.96 0.95 0.95 0.95 
 
Strong constraint 

4D-Var No Jb 100B3DV 10B3DV 5B3DV B3DV 0.3B3DV 0.1B3DV 
Win=25 1.04 1.04 1.05 1.06 1.08 1.08 1.07 
Win=50 1.17 1.17 1.16 1.16 1.16 1.17 1.20 
Win=75 1.26 1.22 1.27 1.36 1.38 1.29 1.70 
Win=100 1.47 1.48 1.56 1.50 1.59 1.54 1.64 

Weak constraint 
4D-Var Q=0.001B Q=0.005B Q=0.01B Q=0.05B Q=0.1B Q=0.5B 
Win=25 1.01 0.93 0.91 0.96 1.02 1.15 
Win=50 1.11 0.97 0.91 0.98 1.03 1.09 
Win=75 1.17 1.05 1.00 1.04 1.13 1.19 
Win=100 1.31 1.06 1.03 1.15 1.20 1.35 
 
 
 
 
 
 
 
Table 7: Adaptation of the table of advantages and disadvantages of EnKF and 4D-Var 
(Lorenc, 2003). Parentheses indicate disadvantages, square brackets indicate 
clarifications and italics indicate added comments. 
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Advantages (disadvantages) of EnKF 
 

¥ Simple to design and code. 
¥ Does not need a smooth forecast model [i.e., model parameterizations can be 

discontinuous].  
¥ Does not need perturbation [linear tangent] forecast and adjoint models.  
¥ Generates [optimal] ensemble [initial perturbations that represent the analysis 

error covariance].  
¥ Complex observation operators, for example rain, coped with automatically, but 

sample is then fitted with a Gaussian. 
o Nonlinear observation operators are possible within EnKF, e.g., MLEF. 

¥ Covariances evolved indefinitely  (only if represented in ensemble) 
o Under-representation should be helped by “refreshing” the ensemble. 

¥ (Sampled covariance is noisy) and (can only fit N data) 
o Localization reduces the problem of long-distance sampling of the 

“covariance of the day” and increases the ability to fit many observations. 
o Observation localization can be used with local filters. 

 
Advantages (disadvantages) of 4D-Var 
 

¥ [Can assimilate asynchronous observations] 
o 4DEnKF can also do it without the need for iterations. It can also assimilate 

time integrated observations such as accumulated rain. 
¥ Can extract information from tracers  

o 4DEnKF should do it just as well 
¥ Nonlinear observation operators and non-Gaussian errors [can be] modeled 

o Maximum Likelihood Ensemble Filter allows for the use of nonlinear 
operators and non-Gaussian errors can also be modeled.       

¥ Incremental 4D-Var balance easy. 
o In EnKF balance is achieved without initialization for perfect models. For 

real observations, digital filtering may be needed.  
¥ Accurate modeling of time-covariances (but only within the 4D-Var window) 

o Only if the background error covariance (not provided by 4D-Var) includes 
the errors of the day, or if the assimilation window is long.  
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List of Figures 
 
Figure 1: Schematic of EnKF with an ensemble of K=2 forecasts x1

f and x
2

f lying on a 
local attractor (dotted line) which indicates the direction of the “errors of the day”. They 
are assumed to be Gaussian, with mean x f and background error covariance B. The 
analysis is performed within the error subspace defined by the ensemble forecasts, an 
approximation of the local attractor (solid line). Only the projection ŷ  of the observations 
y  (with error covariance öR ) on the ensemble subspace is assimilated. The analysis 
ensemble x1

a, x2
a  used as initial conditions for the following forecast, and the analysis 

mean xa are also linear combinations of the ensemble forecasts. A 3D-Var analysis, by 
contrast, does not include information on the errors of the day. 
 
Figure 2: Analysis error in potential vorticity for 100 days of data assimilation using 
rawinsondes with a 3% observational density randomly distributed in the model domain.  
All the data assimilation systems, 3D-Var, LETKF (with 30 ensemble members, local 
volumes of 9x9 horizontal grid points and the full vertical column, and random 
perturbations of 5% size compared to the natural variability added to the model variables 
after the analysis), and 4D-Var (12 hour, 24 hour and 48 hour windows) have been 
optimized. All the experiments are based on a perfect model simulation. 
 
Figure 3: Analysis geopotential height RMS errors versus pressure (hPa) in the SPEEDY 
model using realistic (Reanalysis) observations, either neglecting the presence of model 
errors (full lines) or correcting them using a constant bias estimation obtained from the 
time average of 3D-Var analysis increments (dotted lines). The closed circles and squares 
correspond to 3D-Var, and the open circles and squares to EnKF. The line with triangles 
corresponds to a bias correction in which the amplitude of the bias is estimated at each 
EnKF analysis step. 
 
Figure 4: Comparison of the globally averaged RMS analysis errors for the zonal wind 
(left, m/sec) and temperature (right, K) using PSAS (a 3D-Var scheme, dashed line) and 
the LETKF (solid line) on a finite volume GCM. The same observations (geopotential 
heights and winds from simulated rawinsondes) are used by both systems. Adapted from 
Liu et al. (2007). 
 
Figure 5: Dependence on the number of LETKF ensemble members of the surface 
pressure RMS analysis error with the AFES model in a perfect model simulation on the 
Earth Simulator.  Solid line: after a single analysis step; short dashes: analysis errors after 
10 days, without using forecast error covariance inflation; long dashes: analysis errors 
after 10 days, with forecast error covariance inflation (adapted from experiments by 
Miyoshi and Yamane, 2007). 
 
Figure 6: One month time evolution of the LETKF/AFES analysis error for the surface 
pressure with 10, 20, 40 and 80 ensemble members, in a perfect model simulation using a 
T159/L48 model (adapted from Miyoshi and Yamane, 2007). 
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Figure 1: Schematic of EnKF with an ensemble of K=2 forecasts x1
f and x

2

f lying on a local attractor 
(dotted line) which indicates the direction of the “errors of the day”. They are assumed to be Gaussian, 
with mean x f and background error covariance B. The analysis is performed within the error subspace 
defined by the ensemble forecasts, an approximation of the local attractor (solid line). Only the projection 
öy  of the observations y  (with error covariance R̂ ) on the ensemble subspace is assimilated. The analysis 

ensemble x1
a, x2

a  used as initial conditions for the following forecast, and the analysis mean xa are also 
linear combinations of the ensemble forecasts. A 3D-Var analysis, by contrast, does not include 
information on the errors of the day. 
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Figure 2: Analysis error in potential vorticity for 100 days of data assimilation using 
rawinsondes with a 3% observational density randomly distributed in the model domain.  
All the data assimilation systems, 3D-Var, LETKF (with 30 ensemble members, local 
volumes of 9x9 horizontal grid points and the full vertical column, and random 
perturbations of 5% size compared to the natural variability added to the model variables 
after the analysis), and 4D-Var (12 hour, 24 hour and 48 hour windows) have been 
optimized. All the experiments are based on a perfect model simulation. 
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Figure 3: Analysis geopotential height RMS errors versus pressure (hPa) in the SPEEDY 
model using realistic (Reanalysis) observations, either neglecting the presence of model 
errors (full lines) or correcting them using a constant bias estimation obtained from the 
time average of 3D-Var analysis increments (dotted lines). The closed circles and squares 
correspond to 3D-Var, and the open circles and squares to EnKF. The line with triangles 
corresponds to a bias correction in which the amplitude of the bias is estimated at each 
EnKF analysis step. 
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Figure 4: Comparison of the globally averaged RMS analysis errors for the zonal wind 
(left, m/sec) and temperature (right, K) using PSAS (a 3D-Var scheme, dashed line) and 
the LETKF (solid line) on a finite volume GCM. The same observations (geopotential 
heights and winds from simulated rawinsondes) are used by both systems. Adapted from 
Liu et al. (2007). 
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Figure 5: Dependence on the number of LETKF ensemble members of the surface 
pressure RMS analysis error with the AFES model in a perfect model simulation on the 
Earth Simulator.  Solid line: after a single analysis step; short dashes: analysis errors after 
10 days, without using forecast error covariance inflation; long dashes: analysis errors 
after 10 days, with forecast error covariance inflation (adapted from experiments by 
Miyoshi and Yamane, 2007). 
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Figure 6: One month time evolution of the LETKF/AFES analysis error for the surface 
pressure with 10, 20, 40 and 80 ensemble members, in a perfect model simulation using a 
T159/L48 model (adapted from Miyoshi and Yamane, 2007). 
 
 
 
 
 


