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Abstract

Hydrologic models are twofold: models for understanding physical processes and models for prediction. This study addresses the

latter, which modelers use to predict, for example, streamflow at some future time given knowledge of the current state of the system

and model parameters. In this respect, good estimates of the parameters and state variables are needed to enable the model to gen-

erate accurate forecasts. In this paper, a dual state–parameter estimation approach is presented based on the Ensemble Kalman Fil-

ter (EnKF) for sequential estimation of both parameters and state variables of a hydrologic model. A systematic approach for

identification of the perturbation factors used for ensemble generation and for selection of ensemble size is discussed. The dual

EnKF methodology introduces a number of novel features: (1) both model states and parameters can be estimated simultaneously;

(2) the algorithm is recursive and therefore does not require storage of all past information, as is the case in the batch calibration

procedures; and (3) the various sources of uncertainties can be properly addressed, including input, output, and parameter uncer-

tainties. The applicability and usefulness of the dual EnKF approach for ensemble streamflow forecasting is demonstrated using a

conceptual rainfall-runoff model.
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1. Introduction and scope

Hydrologic models are defined largely by parameters

and states, parameters being physical and generally

time-invariant descriptions of surface and subsurface

characteristics, and states being fluxes and storages of
water and energy that are propagated in time by the

model physics. In practice, in addition to model simula-

tion, reliable operation of a watershed system requires a

continuous correction of the forecast as observational

data become available. This entails the critical need to
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extend the applicability of data assimilation in hydrol-

ogy as emphasized by Troch et al. [39]. However, the

successful use of data assimilation relies on unbiased

model state prediction, which is largely dependent on

accurate parameter estimation. During the past two dec-

ades, much effort has been directed toward the estima-
tion of hydrologic model parameters (calibration) to

improve the forecast accuracy [7,8,11,32]. Conceptual

hydrologic models are usually deterministic representa-

tions, which typically do not contain descriptions of

the various sources of uncertainties. Although it has

been common to translate the inability of a model to

generate accurate streamflow forecasts into parameter

uncertainty, other sources of uncertainties, such as
model structural error, input, and output measurement

errors, also need to be accounted for [16,17]. Several
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authors have studied the uncertainties associated with

parameter estimation, and procedures have been devel-

oped for the statistical analyses of parameter uncertain-

ties [18–20,33,34,42,43].

The aforementioned calibration procedures generally

minimize long-term prediction error using a historical
batch of data assuming time-invariant parameters, and

thus make no attempt to include information from

new observations. Batch calibration requires a set of his-

torical data to be kept in storage and processed en-

masse while lacking the flexibility to investigate possible

temporal evolution of the model parameters. Thiemann

et al. [35] emphasized another limitation of batch cali-

bration in hydrological prediction of an ungauged wa-
tershed where the lack of sufficient historical data

makes the batch method infeasible. These limitations,

as well as an interest in inferring the uncertainty in the

estimated parameters, motivated Thiemann et al. [35]

and Misirli et al. [25] to develop a recursive scheme for

model prediction and parameter estimation in the on-

line mode. From another perspective, Kitanidis and

Bras [15] stated that adaptive estimation might be suit-
able when the forecast lead-time is short in comparison

to the response time of the watershed. They explained

that it would be the case when the error in input is large

while the error in output measurement is small.

Much of the efforts in simulation-based methods of

hydrologic system analyses have been focused on (1) im-

proved methods for parameter estimation wherein state

variable uncertainties were not explicitly taken into
account or (2) improved procedures for estimating

time-varying state variables wherein the parameters

were assumed to be known in advance. The commonly

used batch calibration techniques only address parame-

ter uncertainty while uncertainties in input, output and

model structure are ignored. The main weakness of such

approaches is that they attribute all errors from input,

output and model structure to model parameter uncer-
tainty. Sequential data assimilation procedures have

the potential to overcome this drawback in simulation-

based methods by explicitly taking into account all the

sources of uncertainty. The Kalman filter [14], a recur-

sive data-processing algorithm, is the most commonly

used sequential data assimilation technique, which re-

sults in optimal estimation for linear dynamic models

with Gaussian uncertainties.
Although filtering techniques can address the various

sources of uncertainties in modeling, the typical pre-

sumption of these procedures is that the parameters

are to be specified in advance and sequential estimation

is applied only to the state variables. Because there is no

guarantee that model behavior does not change over

time, the model adjustment through the time variation

of parameters together with state variables is incisive.
Therefore a procedure that can provide the simulta-

neous estimate of states and parameters is required.
The development of interactive (dual) state–parameter

estimation using standard Kalman filter, in the context

of hydrology, is traced back to [36,37] and later to the

joint state–parameter by state augmentation technique

[3,4] (see Section 3 for detail). Those techniques, how-

ever, were limited to linear dynamic systems. For non-
linear dynamics, the extended Kalman filter (EKF),

which relies on linearization of model using first order

approximation of Taylor series, can be used. As re-

ported by Refs. [9,29,30] the EKF can lead to unstable

results when the nonlinearity in the system is strong. To

cope with the drawbacks of the EKF, a Monte Carlo-

based Kalman filter called ensemble Kalman filter

(EnKF) was introduced by Evensen [9]. One of the
advantages of the EnKF comparing to the standard

KF is that the estimation of priori model covariance

(see Section 2.1) is not needed for the updating (analysis)

step although its calculation using the model ensemble is

straightforward.

The EnKF was originally developed for dynamic

state estimation while in this paper its applicability to

static state (parameter) estimation by dual state–para-
meter estimation strategy is extended and its usefulness

on streamflow forecasting is examined.

The organization of the paper is as follow. In Section

2, the general framework for sequential data assimila-

tion is explained, where the mathematical formulation

of the EnKF as a special type of Monte Carlo procedure

for state estimation is elaborated. A systematic ap-

proach for identifying the perturbation factor, as a key
feature in the EnKF, and for tackling the uncertainties

in forcing data (input) and observation (output) is sug-

gested. In Section 3, the dual EnKF algorithm that deals

simultaneously with both model parameters and state

variables is explained and kernel smoothing of parame-

ters is employed for parameter sampling to avoid the

over-dispersion of parameters through random walk.

In Section 4, the applicability of dual EnKF on a con-
ceptual rainfall-runoff model and the power of this algo-

rithm in streamflow forecasting is demonstrated.
2. General framework for sequential data assimilation

Over the past decade, a rapid increase in earth system

science data assimilation activities has been witnessed.
Similarly, hydrologic data assimilation techniques have

garnered a great deal of attention of hydrologists in

the sense that by taking advantage of real time observa-

tion, more accurate forecast can be made [22,23,29,

30,39,40]. The mathematical framework of estimation

theory provides the tools required to approach a variety

of data assimilation problems. The basic objective of

data assimilation is to characterize the state of a system
at some future time from the knowledge of the initial

state. The state of a hydrological system, xt, at time t
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could be conditioned on the observation, y1:t, through

the probability density function:

P ðxt j y1:tÞ ð1Þ
Following [13], the generic discrete-time nonlinear sto-
chastic-dynamic system can be expressed in the form of:

xtþ1 ¼ f ðxt; ut; hÞ þ xt; xt � Nð0;Rm
t Þ ð2Þ

where xt is an n-dimensional vector representing the sys-

tem state variables (for example catchment soil moisture

content) at time t. The nonlinear propagator f(.) con-

tains the model input vector (deterministic forcing data,

ut, e.g., mean areal precipitation), and the (possibly)
time-invariant model parameter h. The model error is

displayed by xt with covariance Rm
t and represents all

the uncertainties related to model structure and the forc-

ing data. Cohn [6] explained that the model error is gen-

erally state-dependent even if the operator f(.) is linear.

The state-dependence and even dependence upon the

parameters as part of the uncertain propagator cause

the model error to be unknown. For simplicity, it is
therefore appropriate to represent the model error as a

stochastic perturbation in Eq. (2).

Suppose that a set of scalar observations is taken at

time t + 1 and that we intend to assimilate the vector

of observations into the model. The output variables

of the model are functions of both the model state vari-

ables and the parameters characterizing the model. The

observation process in general form can be written as:

ytþ1 ¼ hðxtþ1; hÞ þ mtþ1; mtþ1 � Nð0;Ry
tþ1Þ ð3Þ

where propagator h(.) relates the state variables to the

measured variables (in our case streamflow) and yields

the expected value of the prediction given the model

states and parameters. All sources of errors in the obser-

vation are reflected by mt+1, which will be assumed here

to be Gaussian and independent of model error xt.
2.1. Ensemble Kalman filter (EnKF)-state estimation

Sequential data assimilation, also known as filtering,

consists of model state estimation at each observation

time based only on the observations up to present. In

the linear case, this problem is solved by the well-known

Kalman filter [14] as an optimal recursive data-process-
ing algorithm. In the case of nonlinear dynamics, one

can linearize the current state vector to use the so-called

extended Kalman filter (EKF) [13]. The EKF has many

well-known drawbacks such as computational demand

owing to the error covariance propagation and closure

approximation by neglecting the higher order deriva-

tives of the model, which correspondingly may produce

instabilities or even divergence [10,13,24]. The ensemble
Kalman filter (EnKF) as an alternative to the traditional

EKF was first introduced by Evensen [9] and later clar-

ified by Burgers et al. [5] and Van Leewen [41]. The
EnKF is based upon Monte Carlo or ensemble genera-

tions where the approximation of forecast (a priori)

state error covariance matrix is made by propagating

an ensemble of model states using the updated states

(ensemble members) from the previous time step. The

key point in the performance of the EnKF according
to [5,29,30] is to generate the ensemble of observations

at each update time by introducing noise drawn from

a distribution with zero mean and covariance equal to

the observational error covariance matrix; otherwise

the updated ensemble will possess a very low covariance.

A schematic representation of the EnKF is demon-

strated in Fig. 1. As seen in Fig. 1, the EnKF propagates

an ensemble of state vectors in parallel such that each
state vector represents one realization of generated

model replicates. Similar to Eq. (2), the model forecast

is made in the EnKF for each ensemble member as

follows:

xi�tþ1 ¼ f ðxiþt ; uit; h; tÞ þ xi
t; i ¼ 1; . . . ; n ð4Þ

where xi�tþ1 is the ith ensemble member forecast at time

t + 1 and xiþt is the ith updated ensemble member at time

t. In addition to representing the additive process noise,

which is common in standard Kalman filtering, the

EnKF represents the multiplicative model errors

through forcing data perturbations. The forcing data
perturbations are made by adding the fit noise with

covariance Ru
t to the forcing data at each time step:

uit ¼ ut þ fit; fit � Nð0;Ru
t Þ ð5Þ

Now, we form the expression for the error covariance

matrix associated with the forecasted (a priori) estimate.

If the true state variables are known, we can use the fol-

lowing expectation to estimate the a priori model error

covariance:

P�
tþ1 ¼ E½ðx�tþ1 � xtruetþ1 Þðx�tþ1 � xtruetþ1 Þ

T� ð6Þ

However, because the true state is generally unknown, it
is convenient to calculate the ensemble covariance

matrix:

P�
tþ1 ¼ E½X tþ1X T

tþ1� ¼
1

n� 1
X tþ1X T

tþ1 ð7Þ

where, X tþ1 ¼ ½xi�tþ1 � �x�tþ1; . . . ; x
n�
tþ1 � �x�tþ1� and �x�tþ1 ¼

E½xi�tþ1� ¼ 1
n

Pn
i¼1x

i�
tþ1.

The updated (a posteriori) error covariance could be

estimated similarly after updating all of the ensemble

members.

With the assumption of a priori estimate (forecasted

states xi�tþ1), we now seek to use the observation yt+1 to

obtain the posterior estimate (updated states xiþtþ1). A lin-

ear correction equation is used according to standard
Kalman filter to update forecasted state ensemble

members:

xiþtþ1 ¼ xi�tþ1 þ Ktþ1ðyitþ1 � ŷitþ1Þ ð8Þ



Fig. 1. Ensemble Kalman filter (EnKF) schematic. xi�t : Forecasted state ensemble member and xiþt : updated state ensemble member.
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where yitþ1 is the ith trajectory of the observation repli-

cates generated by adding the noise of gitþ1, with covari-

ance Ry
tþ1, to the actual observation:

yitþ1 ¼ ytþ1 þ gitþ1; gitþ1 � Nð0;Ry
tþ1Þ ð9Þ

This is one of the features of the EnKF in which obser-

vations (Eq. (9)) are treated as random variables by gen-

erating an observation ensemble with mean equal to the

actual observation at each time and a predefined covari-

ance. One may want to consider an alternate strategy in
updating step (Eq. (8)) by using the ensemble square root

filter (EnSRF) [47] such that the perturbation of observa-

tion is not needed. Whitaker and Hamill [47] justified the

applicability of EnSRF to the linear observation models

while, in this study we are interested in filtering the non-

linear model dynamics; hence we develop our strategy

according to the version of the EnKF that treats the

observation as a random variable and perturbation of
observation is required [5,29,30]. Therefore, in the next

section, we will elaborate on a systematic procedure to

tune the magnitude of the forcing data and observation

covariances in order to generate a reliable ensemble while

ensemble size can be determined correspondingly.

Similarly, ŷitþ1 is the ith predictive variable at time

t + 1:

ŷitþ1 ¼ hðxi�tþ1; hÞ ð10Þ

In Eq. (8), Kt+1 is the Kalman gain matrix which, in

adaptation to the ensemble based approach can easily

be proven to be as:

Ktþ1 ¼ Rxy�
tþ1 ½R

yy
tþ1 þ Ry

tþ1�
�1 ð11Þ

where Ryy
tþ1 is the forecast error covariance matrix of

the prediction ŷitþ1, and Rxy�
tþ1 is the forecast cross covari-
ance of the state variables xi�tþ1 and prediction ŷitþ1. The

above form of Kalman gain is its modified version of

the standard Kalman gain represented as (Ktþ1 ¼
P�
tþ1H

T½HP�
tþ1H

T þ Rtþ1��1
) where P�

tþ1 is defined in (6),

H is the observation transition operator after lineariza-

tion of observation model (2) and Rt+1 is the same as

Ry
tþ1 defined by (9). One of the advantages of EnKF is

that the estimation of P�
tþ1 is not needed (although pos-

sible as explained in (7)), whereas its estimation in the

standard KF is necessary.

2.2. Identification of hyper-parameters and estimation

of ensemble size

In general, the performance of most ensemble fore-
casts (EF) is influenced by the quality of the ensemble

generation method, the forecast model and also the

analysis scheme. A large number of procedures exist to

evaluate the ensemble forecasts [12,27,38,48]. The key

feature of the EnKF, however, is the perturbation of

forcing data to generate replicates of the model state

variables, and then the correction of the forecasted

ensemble members through the analysis (update) step
(Eq. (8)). A question may arise on how to perturb the

system to construct a reliable ensemble where the spread

of the ensemble is within a meaningful range. Another

issue in EF is the efficiency of the procedure, which is

highly related to the ensemble size. As shown by Eqs.

(5) and (9), the perturbation of forcing data and obser-

vation (input and output) are made by adding noise to

the variable of interest. A fundamental limitation here
is connected with the identifiability of the noise variance

such that it can tackle the uncertainty in input and out-

put. Stochastic noises are assumed to be Gaussian with
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predetermined variances, which are assumed to be het-

eroscedastic (variance changing) [31]. Therefore the var-

iance of the noises introduced to the input and output

variables (Eqs. (5) and (9)) are proportional to the mag-

nitude of the variables as follows:

Ru
t ¼ c � ut ð12Þ

Ry
tþ1 ¼ q � ytþ1 ð13Þ

Here, we call the proportionality factors of c and q as

hyper-parameters.

The magnitudes of these unknown hyper-parameters

determine the ensemble spread. A model�s failure to

properly fit the observations is a measure of model
error, for which an obvious approximation is a compar-

ison between the spread of an ensemble and the ensem-

ble mean forecast error. The deficiency in spread might

be a measure of the uncertainty associated with the

ensemble mean. Anderson [1] discussed a simple proce-

dure based on [27] for evaluating the similarity of truth

versus randomly selected members of the ensemble.

According to this method, the ratio of the time-averaged
RMSE of the ensemble mean, R1, to the mean RMSE of

the ensemble members R2, is calculated:

Ra ¼ R1

R2

ð14Þ

R1 ¼
1

T

XT
t¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

ŷit

 !
� yit

" #2vuut ð15Þ

R2 ¼
1

n

Xn
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T

XT
t¼1

ðŷit � yitÞ
2

vuut ð16Þ
Fig. 2. Hydrologic MODel (Hy
where n and T are the ensemble size and period of anal-

ysis respectively.

If the actual observation is statistically indistinguish-

able from n ensemble members the expected value of the

RMSE ratio Ra, as explained in [1,27] should be

E½Ra� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ 1Þ
2n

r
ð17Þ

The ratio of Ra to E[Ra] is referred to as the Normalized

RMSE Ratio (NRR),

NRR ¼ Ra
E½Ra� ð18Þ

In order to evaluate the ensemble performance, the
normalized RMSE ratio is used, while NRR > 1 indi-

cates that the ensemble has too little spread, and

NRR < 1 is an indication of an ensemble with too much

spread. Ideal ensemble generation should produce a

NRR value close to unity. As seen in Eqs. (13) and

(14), hyper-parameters control the ensemble spread

through the perturbation variance. Tuning of these

new parameters results to the meaningful ensemble gen-
eration while input and output errors are taken into

account.

2.3. Tuning of hyper-parameters

To demonstrate the EnKF hyper-parameter tuning

procedure presented above, the conceptual Hydrologic

MODel (HyMOD) described by Refs. [2,44] (see Fig.
2) was used. HyMOD originates in the probability dis-

tributed moisture model (PDM) [26], an extension of

some of the lumped storage models developed in

1960s, and later to the case of multiple storages

representing a spatial distribution of different storage
MOD) conceptualization.
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capacities in a watershed. Boyle [2] described HyMOD

as a rainfall excess model through a nonlinear tank con-

nected with two series of linear tanks (three identical

quick-flow tanks) in parallel to a slow-flow tank repre-

senting the groundwater flow. From the definitions of

state variables given in Section 2, state variables in this
system are S: storage in the nonlinear tank representing

the watershed soil moisture content, x1, x2 and x3: the

quick-flow tank storages representing the temporary

(short-time) detentions, e.g., depression storages, and

x4: the slow-flow tank storage (subsurface storage). Cor-

respondingly parameters of this model are Cmax, as the

maximum storage capacity within the watershed, bexp,

the degree of spatial variability of the soil moisture
capacity within the watershed, a, a factor for partition-

ing the flow between two series of tanks, Rq and Rs as

the residence time parameters of quick-flow and slow-

flow tanks, respectively.

The above procedure was applied to tune the hyper-

parameters and ensemble size for streamflow forecasting

of the Leaf River watershed, a humid watershed with an

area 1944 km2 area located north of Colins, Mississippi
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which has been a test basin in numerous studies

[2,11,32,35,42]. The data consist of potential evapo-

transpiration, ET (mm/d), mean areal precipitation, P

(mm/d) as forcing data, and streamflow (m3/s) as

observation.

According to Eq. (19), NRR was calculated for a
range of observation perturbation factor (observation

hyper-parameter) and forcing data perturbation (input

hyper-parameter) with 50 ensemble members, where

four combinations of input and observation noise mag-

nitudes were investigated (Fig. 3). The light shaded area

in each subplot shows the acceptable bound for NRR

and a range of acceptable hyper-parameters. As seen,

NRR is more sensitive to the observation hyper-para-
meter than the input hyper-parameter, implying that

accurate estimation using HyMOD model is highly

dependent on the observation replicate generation.

To further investigate the variation of NRR with re-

spect to ensemble size, NRR was examined for a range

of observation hyper-parameter (q = 5–25%) and input

hyper-parameter (c = 10%) (Fig. 4). As seen in case A

of Fig. 3, the minimum noise in input and observation
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(each 5%), the minimum ensemble size of 40 and obser-

vation hyper-parameter, q = 10% will keep the NRR

within the acceptable range (0.99–1.01). Although for
q = 15% with the ensemble size of 30, NRR still lies

within the acceptable range, the reliability on the ensem-

ble size for this case is low because by increasing the

ensemble size the NRR drops suddenly, implying that

the ensemble spread becomes too large. By increasing

the input noise in case B, and keeping the observation

noise same as A, minor changes in NRR with respect

to observation hyper-parameter q and ensemble size
are seen, whereas in case C, by just increasing the obser-

vation noise and having the input noise the same as case

A, more significant changes in the output hyper-para-

meter and required ensemble size is seen.

The above procedure to quantify the input and out-

put perturbation factors and their impact on ensemble

generation has been carried out separately from the

uncertainty associated with state and parameter esti-
mates. In the following section, an interactive procedure

in the context of EnKF to provide a probabilistic esti-

mate of states and parameters is developed.
3. Dual state–parameter estimation with EnKF

Although the parameters of a hydrologic model can
be estimated in a batch-processing scheme, there is no
guarantee that model behavior does not change over

time; therefore model adjustment over time may be re-

quired. Additionally, due to the multiplicative nature
of errors in forcing data and observation, it is prudent

to assemble the parameter adaption in the state evolu-

tion and forecasting system [40]. The need for real time

state–parameter estimation of hydrological models is

not free from empiricism and has been reported in sev-

eral studies [3,4,36,37,40].

Section 2.1 illustrated that recursive state estimation

in a stochastic-dynamic system is carried out such that
the parameters are assumed to be a time-invariant sys-

tem description. In this section, we consider the com-

bined estimation problem, in which both model state

variables and parameters are estimated simultaneously

given erroneous forcing data and observations. One ap-

proach for combined estimation is provided by joint

estimation where state and parameter vectors are con-

catenated into a single joint state vector (state augmen-
tation) [3,4,29,36,37,40]. The drawback of such a

strategy is that, by increasing the number of unknown

model states and parameters, the degree of freedom in

the system increases and makes the estimation unstable

and intractable especially in the nonlinear dynamic

models. An alternative approach to joint estimation is

dual estimation, designed as two interactive filters moti-

vated either by the need to estimate state from the model
(parameters) or by the need to estimate the model from
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state. Examples of dual estimation are the dual extended

Kalman filter (EKF) developed by Refs. [28,45] for esti-

mating neural networks model signal (state) and weights

(parameter). The dual EKF requires separate state-space

representation for the state and parameters through two

parallel filters. To extend the applicability of the EnKF
to simultaneous state–parameter estimation, we need to

treat the parameters similar to state variables with a dif-

ference that parameter evolution is set up artificially,

i.e., it is assumed that the parameters follow a random

walk; therefore, in EnKF, parameter samples can be

made as follows:

hi�tþ1 ¼ hiþt þ sit; sit � Nð0;Rh
t Þ ð19Þ

Using the artificially forecasted parameters and forcing

data replicates, a model state ensemble and predictions
are made, respectively:

xi�tþ1 ¼ f ðxiþt ; uit; h
i�
tþ1Þ ð20Þ

ŷitþ1 ¼ hðxi�tþ1; h
i�
tþ1Þ ð21Þ

Updating the parameter ensemble members is made

according to the standard Kalman filter equation:

hiþtþ1 ¼ hi�tþ1 þ Kh
tþ1ðyitþ1 � ŷitþ1Þ ð22Þ

here, Kh
tþ1 is the Kalman gain for correcting the param-

eter trajectories and is obtained by:

Kh
tþ1 ¼ Rhy

tþ1½R
yy
tþ1 þ Ry

tþ1�
�1 ð23Þ

here Rhy
tþ1 is the cross covariance of parameter ensemble

and prediction ensemble.
Now using the updated parameter, the new model

state trajectories (state forecasts) and prediction trajec-

tories are generated:

xi�tþ1 ¼ f ðxiþt ; uit; h
iþ
tþ1Þ ð24Þ

ŷitþ1 ¼ hðxi�tþ1; h
iþ
tþ1Þ ð25Þ

Model states ensemble is similarly updated as follows:

xiþtþ1 ¼ xi�tþ1 þ Kx
tþ1ðyitþ1 � ŷitþ1Þ ð26Þ

where Kx
tþ1 is the Kalman gain for correcting the state

trajectories and is obtained by:

Kx
tþ1 ¼ Rxy

tþ1½R
yy
tþ1 þ Ry

tþ1�
�1 ð27Þ

where, Kx
tþ1 is the cross covariance of states ensemble

and prediction ensemble.
3.1. Kernel smoothing of parameter samples

The artificial parameter evolution at each time step

by adding small random perturbation provides a new

parameter set in simulation and has been performed

by many authors, from which [36] is one of the earliest
in hydrologic application. The drawback of such para-
meter sampling is the over-dispersion of parameter sam-

ples and loss of information between time points when

the parameters are considered to be fixed. In other

words, loss of information results in posterior distribu-

tion of parameters that are too diffuse when compared

to the posteriors of fixed parameters [21]. One remedy
to this problem is the Kernel smoothing of parameter

samples introduced by West [46]. Suppose that the hit,
and their weights wi

t, i = 1, . . . ,n denote a random mea-

sure fhit;wi
tg to characterize the discrete Monte Carlo

approximation to posterior density of parameters as

P(ht+1jy1, . . . ,yt) with mean �ht and the variance

matrix Vt. West [46] explained that the smooth kernel

density form of the Monte Carlo approximation to
P(ht+1jy1, . . . ,yt) could be a mixture of Gausian densities

with mean mi
t and variance h2Vt, weighted by sample

weights wi
t:

P ðhtþ1 j y1; . . . ; ytÞ �
Xn
i¼1

wi
tNðhtþ1 j mi

t; h
2V tÞ ð28Þ

where, h is the smoothing or variance reduction para-

meter. The standard kernel method considers that
mi

t ¼ hit, however, this results to an over-dispersed kernel

density relative to posterior samples. West [46] and later

Liu [21] suggested that this flaw can be corrected by

shrinkage of kernel locations:

mi
t ¼ ahit þ ð1� aÞ�ht with a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2

p
ð29Þ

If the Monte Carlo approximation to posterior density

P(ht+1jy1, . . . ,yt) has mean �ht and variance matrix Vt,

the parameter evolution in Eq. (19) with independent

perturbation sit, which was assumed to be independent

of ht, has the correct mean �ht but variance matrix

V t þ Rh
t . This problem was reported as loss of informa-

tion in [21,46]. Therefore Liu [21] showed that the artifi-
cial evolution needs to be modified by considering the

correlations between ht and the perturbation sit. By

doing so the conditional evolution density of parameters

is written as follows:

P ðhtþ1 j htÞ � Nðhitþ1 j ah
i
t þ ð1� aÞ�h; h2V tÞ ð30Þ

where, a ¼ 3d�1
2d and d is a factor in (0 1], which is typi-

cally around 0.95–0.99. For more information about

the derivation of the conditional density and the para-

meters associated with it, please refer to Liu [21].

A dual state–parameter estimation flowchart using

EnKF with kernel smoothing of parameters is shown

in Fig. 5.
4. Streamflow forecasting by applying dual EnKF on

HyMOD model

The applicability and usefulness of the dual EnKF on

state–parameter estimation of HyMOD for one-day



Fig. 5. Dual state–parameter estimation flowchart using the ensemble Kalman filter by kernel smoothing of parameters.
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ahead streamflow forecasting in the Leaf River basin
were investigated. The system was initialized by defining

the prior uncertainty range associated with the parame-

ters in Table 1. With regard to state variables, storages

in the linear tanks have no threshold, and storage in

nonlinear tank limited to the minimum and maximum

bound defined for the nonlinear tank parameters which

is found from model formulation [2] to be between 60
Table 1

Prior uncertainty associated with parameters in HyMOD model

Parameter Description

Rq Residence time for quick-flow tanks

Rs Residence time for slow-flow tank

a Partitioning factor between tanks

bexp Spatial variability of soil moisture capacity

Cmax Maximum storage capacity of watershed
and 320. The starting point in the parameter space is
sampled from the uniform distribution, then forecast-

updates of all state variables and parameters are made

simultaneously using the dual estimation. Owing to the

stochastic-dynamic nature of the problem, it is required

to run the model for the sufficient number of parameter

samples to examine the time evolution of predictive

uncertainties.
Minimum Maximum

0.20 0.70

0.01 0.10

0.60 0.99

0.10 1.50

150.00 350.00



Table 2

Expected value of the parameter sets in HyMOD estimated by different

algorithms

Parameter Estimation algorithm

SCE-UA SCEM-UA BaRE Dual EnKF

Rq 0.465 0.46 0.478 0.463

Rs 0.01 0.0027 0.0295 0.0127

a 0.861 0.84 0.667 0.82

bexp 0.251 0.38 0.15 0.406

Cmax 282.51 257.33 181.91 258.34
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For this experiment, 500 starting points were sampled

in the parameter space, and dual ensemble filtering with

ensemble size of 50 (resulted from the tuning of hyper-

parameters) was performed from each starting point.

Fig. 6 displays the time evolution of HyMOD parame-

ters for the water years of 1950–1953. Shaded areas in
this figure represent the evolution of confidence intervals

obtained from 500 trajectories, while each trajectory is

the mean of 50 ensemble members. As seen all parame-

ters converge smoothly to the certain region in parame-

ter space where the uncertainty bounds stabilize.

It also appears from Fig. 6 that quick-flow tank

parameter Rq is the most identifiable parameter by

showing the fastest convergence with a minimum degree
of uncertainty comparing to the others. In contrast, the

maximum storage capacity of the watershed displayed

by Cmax is less identifiable than the others and shows

the slowest convergence. It is apparent from the model

configuration (Fig. 2) that Cmax and bexp are in high

interaction such that one compensates for another, that

is, the uncertainty in Cmax can be compensated with suit-

able degree of convexity or concavity of the nonlinear
reservoir represented by bexp to provide the most accu-

rate excess rainfall possible for parallel tanks. As a com-

parison, the expected values of parameters obtained

using different algorithms are shown in Table 2. The last

three columns in Table 2 give the algorithms developed

at University of Arizona from which the SCE-UA [7,8]

and SCEM-UA [42] are the global optimization algo-

rithms suitable for the batch calibration of hydrologic
model parameters. BaRE algorithm [25,35] in the last
Fig. 6. Time evolution of the HyMOD parameters for 3 years of dual ensemb

75, 68 and 10 percentile confidence intervals.
column is a Bayesian recursive estimation technique,

which also investigates the time evolution of parameter
probabilities.

Although the dual EnkF result is comparable with

other algorithms and, to a higher extent, with the batch

calibration schemes, it has some advantages over the

above models such as:

(1) The capability of dual EnKF in interactive parame-

ter and state estimation in which the updated
parameters at each time step are used to update

the model state. As an example, the estimation of

one of the state variables as the storage of nonlinear

tank, conceptually representing the watershed soil

moisture storage, is demonstrated in Fig. 7. This is

an unobservable quantity and the accuracy of its

estimation is translated through the accuracy of

streamflow forecasting as the observable and pre-
dictable variable.
le filtering (water years of 1950–1953). Shaded areas correspond to 95,
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Fig. 7. Soil moisture storage variation (storage in the nonlinear tank of the HyMOD) in the Leaf River watershed (water year 1952–1953) with 95

percentile confidence interval. Dash line is the mean value of the ensemble.
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(2) In addition to parameter uncertainty as the only

source of uncertainty affecting the performance of

the estimation considered in the above-mentioned

procedures, the dual EnKF undertakes other

sources of errors.
(3) Dual EnKF as a recursive procedure does not

require keeping all of the data in storage; thus, by

availability of observation at any time, the variables

in the system can be adjusted for better conformity

with the observation.

(4) Examining the stable uncertainty bounds in Fig. 6

determined by dual EnKF reveals that the parame-

ters do not converge to single points and, therefore,
degeneracy of parameter samples does not happen.

This is the drawback that BaRE algorithm [25,35]

suffers from, that is the parameter uncertainty

bounds vanish in a short amount of time after the

recursive estimation starts.

In keeping up with previous studies [25,42], the per-

formance of the dual EnKF in streamflow forecasting
is demonstrated in Fig. 8. The hydrograph simulation

is the result of sequential dual estimation by assimilating

streamflow everyday for the water year of 1952–1953 in

the Leaf River basin using the HyMOD. The forecasting

results with 95% confidence intervals are derived from

model output ensemble at each time step. As seen the

ensemble mean of daily streamflow forecasting is in very

good agreement with the observations, implying that the
dual EnKF is a reliable and effective approach for

streamflow forecasting. The uncertainty bound also cov-

ers the observation in a consistent manner, despite the

small negative bias in the rising limb and positive bias
in the recession limb of hydrograph which can be seen

in lower subplot in Fig. 8. This persistent bias can be ex-

plained as the role of model structural error that has not

been considered in this study which could be included in

future studies.
5. Summary and conclusion

Hydrologic models are still far from perfect, and

hydrologists need to put the models in better compliance

with observations prior to use in forecasting. Batch cal-

ibration procedures as the most commonly used tech-
niques in hydrology, and even the recursive calibration

schemes concern primarily the estimation of parameters

and the identification of uncertainties associated with

them. However, more general algorithms that account

for the simultaneous interactions of model states and

parameters are encouraging while different sources of er-

rors are considered. In this study, an integrated and

algorithmic framework for dual state–parameter estima-
tion using EnKF was presented, which leads to the

ensemble streamflow forecasting. Perturbation of input

and output to generate and modify the ensemble of

model variables and to determine the ensemble size are

key features of the EnKF, and identification of the mag-

nitude of perturbation in a systematic framework is de-

sired and elaborated in this study.

In the hydrologic model (HyMOD) used for this
study, the analysis certainly indicated the feasibility of

sequential ensemble filtering that incorporates parame-

ters of the model in addition to state variables. In es-

sence, the dual EnKF use the ensemble of model
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Fig. 8. Ensemble streamflow forecasting by dual state–parameter estimation of HyMOD for the Leaf River watershed (water year 1952–1953), (A)

forcing data (precipitation), (B) daily assimilation of observed streamflow (solid dots), streamflow forecast (shaded area with 95% uncertainty

bound), and mean value of the ensemble streamflow forecast (solid line), and (C) model residuals (observed––ensemble mean forecast).
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trajectories in an interactive parameter–state space

and provides the confidence interval of parameter–state

estimation. Because the traditional random walk of

parameters may result in over-dispersion/information
loss and consequently the collapsing the parameter var-

iance, the kernel smoothing of parameters can be

employed.

Using the dual technique, the time evolution of

parameter uncertainties and one of the state variables

were demonstrated. The one-day ahead streamflow fore-

casting in the Leaf River watershed using the estimated

states and parameters was performed, and result seemed
to be very consistent with observation. From a filtering

point of view, this study offers the following features

which do not exist in nonensemble methods:

(1) It allows incorporating a wide range of uncertainties

to the model.

(2) It provides a quantitative basis for probabilistic rep-

resentation of estimates.
(3) The measure of confidence interval becomes possi-

ble using such ensemble technique.

(4) It provides a flexible and reliable strategy to deal

with nonlinear dynamic models; the problem that

could not be overcome entirely by even extended

Kalman filter.

(5) It employs the kernel smoothing procedure that pro-

tects the parameter sampling from over-dispersion
or loss of information while doing the forecasting.

The concept of random walk of parameters was

always suffering from this drawback.
Finally, it is safe to say that dual EnKF provides a

more flexible approach compared to other estimation
procedures explained in Section 4. It is a suitable tech-

nique for nonlinear models and together with kernel

smoothing of parameter samples is a robust and effective

algorithm that can tackle input, output and parameter

uncertainties properly.
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