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Abstract

Ž .In this work, we propose a modified form of the extended Kalman filter KF for assimilating oceanic data into numerical
models. Its development consists essentially of approximating the error covariance matrix by a singular low rank matrix,
which amounts in practice to making no correction in those directions for which the error is the most attenuated by the
system. This not only reduces the implementation cost but may also improve the filter stability as well. These ‘directions of
correction’ evolve with time according to the model evolution, which constitutes the most original feature of this filter and
distinguishes it from other sequential assimilation methods based on the projection onto a fixed basis of functions. A method

Ž .for initializing the filter based on the empirical orthogonal functions EOF is also described. An example of assimilation
Ž .based on the quasi-geostrophic QG model for a square ocean domain with a certain wind stress forcing pattern is given.

Although this is only a simple test case designed to assess the feasibility of the method, the results are very encouraging.
q 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

ŽThis work was motivated by the problem of data assimilation in oceanography or in geophysical sciences
.generally . In general, data assimilation is seen as the means of obtaining a consistent picture of a geophysical

system optimally blending all the information available on this system. This information may consist of data of
all types, of varying accuracy and geographical distribution, and also of information derived from the theoretical
knowledge already possessed on the system expressed in terms of physical laws, either deterministic or
statistical, and therefore via various forms of models.

Several methods exist for assimilating observations into numerical models, most of them originally
developed in meteorology. Two main approaches are usually seen in the assimilation techniques, following

Žeither the optimal control theory or the statistical estimation theory see for example Ghil and Manalotte-Rizzoli,
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.1991 . In the present study, we are interested in the second approach in which the Kalman filtering theory is the
primary framework. But the application of this theory encounters enormous difficulties due to the huge
dimension of the state vector of the considered system. A further major difficulty is caused by its non-linear

Ž .nature. To deal with this, one usually linearizes the ordinary Kalman filter KF leading to the so-called
Ž .extended Kalman filter EKF . We shall assume that the linearized system is close enough to the original one for

the results in the linear case to be transferable to the non-linear case.
In this paper, we shall concentrate on the issue of dimension and propose a method to partially overcome this

difficulty. To this end, a brief description of EKF together with some discussion of problems arising in its use in
geophysical data assimilation will be first given in Section 2. From this, an algorithm based on the use of
singular low rank error covariance matrix, will be introduced. This filter, called the singular evolutive extended

Ž .Kalman SEEK filter, not only solves the practical problem of reducing the computational cost to an acceptable
level, but in addition possesses a certain theoretical foundation. Indeed, as it is pointed out in Section 2, it would
be utopic to look for an ‘optimal’ filter in such a high dimensional context, so our aim may simply be confined
to finding a stable filter which reduces the propagation of error from one step to the next. Our SEEK filter is
designed to achieve this. It operates by applying correction in certain directions only and thus it has some

Ž .similarities to certain other recently proposed reduced order KF see references in Section 3 . But the novel
feature of our filter is that these directions are constructed to be those for which the system least attenuates the

Ž .error and therefore evolve in time as the state of the system changes hence the name ‘evolutive’ . In this regard,
our filter possesses a certain robustness with respect to initialization of possibly poor quality. However, we also
provide a method for finding a good initial singular low rank error covariance matrix, based on the empirical

Ž . Ž .orthogonal functions EOFs also known as principal components PCs . The overall method is illustrated by an
Ž .example in Section 4. In this simple academic test case performed with a simple quasi-geostrophic QG model,

an assessment of the feasibility of the method is only sought. Real applications are currently being investigated
in the North Atlantic and in the tropical Pacific with more complex models and these will be reported later.

2. The extended Kalman filter

For consistency with the existing literature on the subject, we adopt most notations proposed by Ide et al.
Ž .1997 . Consider a physical system described by

x t t sM t ,t x t t qh t 2.1Ž . Ž . Ž . Ž . Ž .i iy1 i iy1 i

t Ž .where x is a vector representing its true state, M t ,t is an operator describing the system transition fromiy1 i
Ž . Ž .time t to t and h t a noise term. The transition operator M s,t is usually obtained from the integration ofiy1 i i

a certain partial differential system, typically a numerical model. At each t , one observes a vectori

yo sH x t t qe 2.2Ž . Ž .i i i i

Ž .where H is the observational operator and e represents the noise. The random vector h t and e are assumedi i i i
Ž .to be independent white noise processes with zero mean and covariance matrix Q t and R , respectively.i i

tŽ . Ž .The problem is to estimate x t given the observations up to this time. Since the time of Kalman 1960 ,i

this problem has been the source for numerous developments in various fields of science and in particular that
Ž .of atmospheric and oceanic flow Ghil, 1986; Ghil and Manalotte-Rizzoli, 1991 . The KF has been extended to

Ž .non-linear system through linearization, yielding the so-called EKF Ghil et al., 1982 which has been the
Ž .subject of various investigations Miller et al., 1994; Evensen, 1992, 1993, 1994 . It may however result in

Ž .instability in the covariance evolution equation Evensen, 1992; Gauthier et al., 1993 .
Ž .The EKF operates sequentially: from an analysis state vector x t and its error covariance matrixa iy1

aŽ . aŽ . aŽ .P t , it constructs the next x t and P t as follows.iy1 i i
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Ž . Ž . fŽ . Ž . aŽ .i Forecasting. The model Eq. 2.1 is used to forecast the state at time t : x t sM t ,t x t . Byi i iy1 i iy1
Ž . aŽ .linearizing Eq. 2.1 around x t asiy1

Xt a t ax t fM t ,t x t qM t ,t x t yx t qh t , 2.1Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .i iy1 i iy1 iy1 i iy1 iy1 i

Ž . Ž . aŽ .where M t ,t denotes the gradient of M t ,t eÕaluated at x t , the forecast error covariance matrixiy1 i i iy1 iy1

can be seen to be approximately
Tf aP t sM t ,t P t M t ,t qQ t 2.3Ž . Ž . Ž . Ž . Ž . Ž .i iy1 i iy1 iy1 i i

wherein T denotes the transpose.
Ž . Ž . o fŽ .ii Analysis or correction . The new observation y is used to correct the forecast state vector x ti i

aŽ . fŽ . w oŽ . fŽ .xaccording to x t sx t qK y t yH x t , where K is a certain matrix called the gain. The optimali i i i i i i

gain can be shown to be
y1f T f TK sP t H H P t H qR , 2.4Ž . Ž . Ž .i i i i i i i

fŽ .where H is the gradient of H evaluated at x t . The corresponding analysis error covariance matrix isi i i

y1a f f T f T fP t sP t yP t H H P t H qR H P t .Ž . Ž . Ž . Ž . Ž .i i i i i i i i i i

Ž .For the mathematical analysis, the whole algorithm can be described by two equations: i the Riccati
equation which updates the error covariance matrix

P a sM P a MT qQ y M P a MT qQ HTŽ .i iy1, i iy1 iy1, i i iy1, i iy1 iy1, i i i

=
y1a T T a TH M P M qQ H qR H q M P M qQ 2.5Ž .Ž . Ž .i iy1, i iy1 iy1, i i i i i iy1, i iy1 iy1, i i

a aŽ . Ž . Ž . Ž .putting P sP t , Q sQ t and M sM t ,t for short, and ii the filter equationi i i i iy1, i iy1 i

a a o ax t sM t ,t x t qK y yH M t ,t x t 2.6Ž . Ž . Ž . Ž . Ž . Ž .i iy1 i iy1 i i i iy1 i iy1

a Ž . Ž . Ž .where K is related to P through Eqs. 2.3 and 2.4 . From Eq. 2.5 , it can be shown that when R isi iy1 i

invertible

K sP a HT Ry1 . 2.7Ž .i i i i

A practical difficulty with the EKF is that it assumes everything known. While one can reasonably assume
Ž .that H and M t ,t are known, it would be too optimistic to assume so for the covariance matrices R , Qi iy1 i i i

and P a. For R , one may have good knowledge of the instrumental error variances in situations such as0 i

altimetric observations from the satellite TopexrPoseidon over the ocean, for which the error estimates have
Žbecome fairly solidly established, being based on now extensive verification and validation phases see for

example the two special issues of the Journal of Geophysical Research, Vol. 99, C12, Dec. 1994, and Vol. 100,
.C12, Dec. 1995 . But it is not clear how the correlations of these errors can be obtained. One often assumes that

Žthey vanish but the possibility that errors in neighboring observations be correlated cannot be ruled out in fact
.this occurs frequently as a result of geophysical correction . More difficult to obtain are the covariances matrices

a tŽ .Q and P . The first would require the accurate knowledge of the statistical behavior of the state process x t ,i 0 i

but how can this be acquired without actually observing it? As for the second, quite often very little is known
aŽ .concerning the initial state of the system and so even less about the error when some x t is chosen. One0

should not forget that the systems encountered in meteorology and oceanography are of very large dimension so
a Ž Ž .that the matrices Q and P have a vastly larger number of independent elements namely N Ny1 r2 wherei 0

5 6 .N is the dimension of the system, typically 10 –10 or even higher . It is questionable whether one can have
even a crude knowledge on such a huge number of parameters. This point is discussed at length in the work of

Ž .Cane et al. 1996 . Here we note, only briefly, that a statistical estimate based on a sample of length T has a
'convergence rate of 1r T and in practice T would be only a tiny fraction of N. Therefore, if one tries to
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estimate such a huge number of parameters, there will be inevitably large errors in many. As for the choice of
a Ž .P , it might be of somewhat lesser importance in view of the property of the Riccati Eq. 2.5 . The theory for0

such equation states that for linear autonomous systems and under appropriate conditions ‘any solution will
a Ž .converge to the same limit regardless of the starting point P ’ Hager and Horowitz, 1976 . Therefore, even if0

P a is poorly specified, one may hopefully still have a good approximation to P a, in the long term. But whether0 i

this is true in practice is debatable. Our system is not linear autonomous, at most it is approximately so. More
precisely, M may be regarded as constant in time only for a limited time span. As our system is huge,iy1, i

convergence may be so slow that P a never approaches its limit before M has changed significantly. Ai iy1, i

further point is that for the above result to hold, one of the conditions needed is controllability. This condition,
Ž .taken from the control theory with the dynamic noise h t playing the role of the control, requires that the statei

Ž .of the system can be brought to any point in a neighborhood of its starting point by some realization of h t .i

Such condition is not verified if there is no dynamic noise or if such noise is highly directional. But on physical
grounds and also from observations, it appears that the covariance matrix of the state vector can be represented
to a good approximation by a low rank matrix, which implies that the dynamic noise, if it exists, should be
highly directional.

From the above discussion, we may conclude that there is a real possibility that the matrices R andi
Ž Ž .especially Q are imperfectly specified the discussion of Fukumori 1995 with regards to this question of thei

.model and data error estimates is particularly valuable . The KF is optimal, but only if the parameters R and Qi i

are correctly specified. Thus, any KF is in practice somewhat suboptimal. As far as the EKF is concerned, there
is also the crucial additional issue of the linearization error.

3. Singular evolutive extended Kalman filter

The above considerations suggest that it may be too ambitious to demand optimality, even to an approximate
degree. Therefore, we will concentrate on a more modest aim: stability. By this we mean that the filtering error

Ž .should remain bounded. Consider a general filter algorithm defined by the Eq. 2.6 and certain gain matrix K ,i
Ž . Ž . Ž X.but not necessarily the one given by Eqs. 2.5 and 2.7 . Then from Eq. 2.1 the filter error is propagated

according to
a t a tx t yx t f IyK H M x t yx t yK e y IyK H h t . 2.8Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .i i i i iy1, i iy1 iy1 i i i i i

ŽThis formula shows that the behavior of the error depends essentially on the sequence of matrices Iy
.K H M . To simplify things, consider the ‘nearly linear autonomous’ case where M may be regardedi i iy1, i iy1, i

Ž .as constant over a certain time span and assume H as the constant in time, so that the subscript i will bei
Ž .dropped. If K is chosen constant sK , then what matters are the eigenvalues of MyKHM. The error willi

diverge if one eigenvalue has modulus greater than 1 and remain bounded if all eigenvalues have modulus less
than 1. In the last case the matrix MyKHM is said to be stable. Thus, our aim would be to make it is so.

Ž .Referring to Eq. 2.8 , this means that the aim is to reduce the error growth of the filter, so that it is attenuated at
Ž .each step. It is clear from Eq. 2.8 that this depends on the choice of the filter gain K together with the systemi

dynamics and the observation operator, but not on the dynamical and observational noise covariance matrices.
Thus, by focusing on this property, we need not worry about these matrices being badly specified.

Practical constraints on actual implementation of the KF or EKF leave no other choice but to reduce the size
of the system in some way. Schematically several strategies are possible. Firstly, one can simply reduce the

Ždimension of the model state vector to make it compatible with the computational constraint Miller and Cane,
.1989; Gaspar and Wunsch, 1989; Gourdeau et al., 1992; Fukumori et al., 1993 . Quite often, one also assumes a

Žcertain asymptotic property of constancy for the error covariance matrix Gourdeau et al., 1992; Fu et al., 1993;
.Fukumori and Malanotte-Rizzoli, 1995; Fukumori, 1995 . Secondly, one might consider reducing the KF

Ž .working space until the computation becomes feasible without necessarily reducing the size of the model! .
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Ž .Fukumori 1995 , for example, undersampled the computational grid used for the filter description. Several
Žstudies are based on some ways of projecting the filter evolution on a reduced dimension basis Evensen, 1994;

.Cane et al., 1996, Hoang et al., 1995 . Another approach consists of relying on physical considerations which
Žwill naturally decrease the degree of freedom of the system: long wave approximation in the tropics Cane and

. Ž .Patton, 1984 and geostrophy Dee, 1991 as examples, among others.
Physical considerations support the idea of reducing the ‘working dimension’ of the filter in some way.

Indeed, the ocean is basically a forced and dissipated dynamical system possessing an attractor, meaning that
asymptotically the trajectories of the state vector occupy only a small part of the phase space, the so-called
‘attractor’. Clearly, the description of this attractor implies a much lower degree of freedom than the description
of the whole system. However, such description does not come easily since the attractor is basically ‘curved’, so
that methods using linear projections would produce some error. Here, we adopt a more flexible approach by
retaining the state space but restricting the corrections to a linear space ‘tangent’ to the attractor in some sense.
This way, the correction does not make the state vector leave the attractor once it is nearly on it. Note that in the

Ž . Ž .case of the ocean and of the atmosphere the attractor is ‘strange’ or chaotic : a slight perturbation of the state
vector can develop into a marked divergence in the phase space. Our filter is constructed in such a way that it
corrects in priority the errors in the directions for which they are most amplified. These directions are
necessarily tangent to the attractor since when a state vector is ‘pushed’ outside the attractor, it will be pulled

Ž .back though not to the same place to the attractor.
One may view our filter as a variant of the EKF with a singular low rank error covariance matrix P a. In thisi

Ž .respect, it is similar to the reduced rank Kalman filtering introduced by Cohn and Todling 1995, 1996 and
Ž . Ž .Verlaan and Hemmink 1995 . However, there are differences, in Cohn and Todling 1995, 1996 , a singular
Ž . Ž . a Tvalue decomposition SVD of M or an eigenvalue decomposition EVD of M P M isiy1, i iy1, i iy1 iy1, i

performed in order to obtain a low rank approximation, before entering the filter calculation. We feel that this
Ž .procedure may be too costly if such SVD or EVD has to be done step by step. In Verlaan and Hemmink 1995 ,

Ž .a linear time invariant system or a steady state filter is considered so that such decomposition is done only
once. No such decomposition is required in our filter: the algorithm is constructed in such a way that it always

Žproduces a low rank error covariance matrix. Further, it is meant to work in a non-linear time variant system at
.least when the non-linearity is not too strong and the time evolution not too fast . There is also another subtle

Ž .difference: the image space of our error covariance matrix does not correspond asymptotically to the
T a T Ž .eigenspace of M M or of M P M as implied in the above authors’s works , but to that ofiy1, i iy1, i iy1, i iy1 iy1, i

M .iy1, i

We shall present three versions of our algorithm: a no dynamic noise version, a general version and a version
with forgetting factor. The reason for presenting the first version separately is that it is simpler and easier to

Ž .understood, being a particular case of the EKF in the absence of dynamic noise Q s0 . Despite its name, iti

can be used in the case where dynamic noise do exists, since the feature which we are focused in, namely its
stability, is not affected by the presence of such noise. Of course, there would be a loss of performance, so it
would be more appropriate to use the general version when the dynamic noise is strong. This version is no
longer a particular case of the EKF but it could have a good performance since it makes correction in the
directions for which the error is likely to be high. More importantly still, it is designed to possess the stability
property. But it is more complex and costly in terms of computation and requires the specification of the
dynamic noise covariance matrix Q or at least its restriction to a low dimensional linear space. As discussedi

before, this specification is a big difficulty in the EKF. Here it is less severe because one does not have to
specify the whole matrix Q but only its restriction. The version with forgetting factor has been developed as ai

compromise, since it can handle the presence of dynamical noise to some extent. It is the same as the first
version but with a ‘forgetting’ factor which downweigh past observation. Its appeal is its simplicity and low
cost.

Our filter possesses the interesting property of being able to correct against bad initialization: the sequence
P a is in the long run little affected by the initial P a. Nevertheless, in high dimensional systems, the choice of P a

i 0 0
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remains important: the time taken by the filter to correct the effect of bad initialization could prove long, which
would then hamper its capacity to track the evolution of the system dynamics. Taking this into consideration, we
also provide an initialization method based on the EOFs.

For quick reference, we provide here a summary of our filter.

Ž . aŽ .i Initialization. Choose an initial analysis state x t and a low rank error covariance matrix of the form0

L U LT .0 0 0

Ž . fŽ . Ž . aŽ .ii Forecasting. x t sM t ,t x t and L sM L .i iy1 i iy1 i iy1, i iy1

Ž .iii Correction. Compute U either by:i

Uy1 srUy1 qLT HT Ry1 H Li iy1 i i i i i

with rs1 in the no dynamic noise version and 0Fr-1 in the version with forgetting factor, or by

y1y1 y1y1 T T T T T y1U s U q L L L Q L L L qL H R H LŽ . Ž .i iy1 i i i i i i i i i i i i

aŽ . fŽ . T T y1w o fŽ .xin the general version. Then compute x t sx t qL U L H R y yH x t .i i i i i i i i i i

Ž . Ž T .y1 y1iv Renormalization. One can change L , U to TL , T U T without changing the algorithm. Thisi i i i

should be done periodically to avoid the column of L from becoming large and nearly parallel each to thei

others and U becoming ill conditioned as a result. Practically, one can take T to be the Cholesly factor of Uy1
i i

so as to change U to the identity matrix.i

3.1. No dynamic noise Õersion

3.1.1. Filter description
This version is a particular case of the EKF with Q s0 and a starting error covariance matrix P a of lowi 0

Ž .rank. In this case, the Riccati Eq. 2.5 simplifies to:

y1a a a T T a T T aP sM P yP M H H M P M H qR H M P M .Ž .i iy1, i iy1 iy1 iy1, i i i iy1, i iy1 iy1, i i i i iy1, i iy1 iy1, i

Let us factorize P a into L U LT where U is a positive definite matrix with dimension equal to the rank of0 0 0 0 0
a Ž .P this being low in practical applications . Then:0

y1a T T T T TP sL U yU L H H L U L H qR H L U L ,Ž .1 1 0 0 1 1 1 1 0 1 1 1 1 1 0 1

where L sM L . Denoting the expression inside the above bracket by U and repeating the same1 0,1 0 1

computation, one gets

L sM L ,i iy1, i iy1

P a sL U LT ,i i i i

y1T T T TU sU yU L H H L U L H qR H L U . 3.1Ž .Ž .i iy1 iy1 i i i i iy1 i i i i i iy1

In the case where R is invertible, we can derive a more interesting updating equation for U , which showsi i
a Ž .that the U are invertible and hence P all have the same rank. By Eq. 3.1i i

y1T T y1 T T T TU L H R H L sU L H H L U L H qR H L .Ž .i i i i i i iy1 i i i i iy1 i i i i i
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Ž . y1If U invertible, the last expression, by Eq. 3.1 is no other that IyU U . Hence U is also invertibleiy1 i iy1 i

with inverse given by

Uy1 sUy1 qLT HT Ry1 H L . 3.2Ž .i iy1 i i i i i

Ž .Since U is invertible, we deduce that U is and Eq. 3.2 holds, for all i.0 i
Ž . Ž . Ž .The filter gain K is computed from Eqs. 2.7 , 3.1 and 3.2 and the filter equation is then given by Eq.i

Ž .2.6 . From these equations, one sees that corrections are made parallel to the space spanned by the columns of
L .i

3.1.2. Stability consideration and interpretation
We consider here the near linear autonomous case where M , H , Q , R can all be considered constant 1

iy1, i i i i
Ž .over a certain time span and we thus drop the subscript i where appropriate. One can then recognize the
iteration L sML as being the power method for computing the eigenvectors of M. Indeed, in the casei iy1

where L is a column vector, it is well known that it tends to align with the first eigenvector of M, thei

eigenvectors being ordered according to decreasing moduli of their eigenvalues. In general when L is a matrixi

with r columns, the linear space spanned by them converges to the one spanned by the first r eigenvectors of
M. Indeed, let V and V be matrices whose columns constitute a basis of the invariant subspaces associated]
with the first r eigenvalues of M and with those remaining. In order that they are well defined, we assume that

Ž . Ž .the rq1 -th eigenvalue is strictly less than the r-th in modulus. By definition, MVsVL , MV sV L] ] ]
for some matrices L and L having as eigenvalues the first r eigenvalues of M and the remaining ones. Now]
decompose L into VNqV N , the column of N and N representing the coordinate of the columns of L0 ] ] ] 0

Ž .with respect to the above bases. Assuming that N a square matrix is invertible, one can absorbed it into V by
changing VN to V and Ny1L N to L . Then,

L Lyi sVqV Li N Lyi .i ] ] ]

5 i 5 Ž . i 5 5 Ž .But A FCr A where is a matrix norm, C a constant and r A is the maximum modulus of the
5 5 5 5 5 5 yieigenvalues of A. Further, any matrix norm satisfies the inequality AB F A B . Therefore L L ™V asi

i™`, implying the above-mentioned convergence.
Ž .Consider now the sequence of matrices U , which by Eq. 3.2 , can be written asi

y1i
y1 T T y1U s U q L H R HL . 3.3Ž .Ýi 0 j j

js1

Therefore
iy1

yi yi yk TT y1 yi T y1 yi T kyi T y1 kyi ykL U L s L U L q L L L H R H L L L .Ž . Ž . Ž . Ž . Ž .Ýi 0 iyk iyk
ks0

Since lim L Lky i sV for each k, each term in the above sum converges and can be bounded in matrixi™` iyk
Ž y1 .2 k Ž y1 .norm by a constant times r L . Hence, by the Lebesgue-dominated convergence theorem, if r L -1,

then
`

yi ykT y1 yi T T T y1 yk y1L U L ™ L V H R HVL sP , as i™`. 3.4Ž . Ž . Ž .Ýi
ks0

Obviously, the notation Py1 makes sense only if this matrix is invertible. This will be assumed throughout and
can be seen to correspond precisely to the observability condition. It means roughly that the observation
operator must provide sufficient information to determine the system state uniquely.

1 In applications, H may vary in time in a cyclical manner, an example is in the case of oceanographic satellite observations. But ai

similar analysis can be done based on the consideration of a complete cycle.
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Ž y1 . )The above result depends on the assumption that r L -1, which is the same as that the number r of
eigenvalues of M with modulus greater than 1, is at least r. In the case where r ) -r, we need to change our
definitions of V, V and L somewhat. We now take V and V to be matrices whose columns constitute a basis] ]
of the invariant spaces associated with the r ) first eigenvectors and with those remaining. We define L and

Ž .L as before. Assume that M admits no eigenvalue of unit modulus so that r L -1. As before, we] ]
decompose L into VNqV N . The matrix N is no longer square but we assume that it is of full rank. Then0 ] ]
there is a r=r invertible matrix T such that the first r ) columns of NT form an invertible matrix while the

˜ ˜w xremaining ones are zero. As before, we absorb this invertible matrix into V, so that L Ts VqV N V N for0 ] ] ]
˜some matrices N and N . Then, in a similar way as before]

yiL 0 i yi i yi˜ <L T s VqL V N L L N L ,i ] ] ] ] ]0 I

TT Tiy1yi yi yi kyiL 0 L 0 L 0 L 0T y1T U T s L TÝi iykž /0 I 0 I 0 I 0 Iks0

=
ky i kyiL 0 L 0T y1H R H L T .iykž /0 I 0 I

5 k 5 Ž .kBy a similar argument as before based on the inequality A FCr A , it can be shown that the above right
Pyi 0w x w xhand sides converge as i™` to V 0 and , respectively, P being as before and ) denoting an

0 )

unspecified positive definite matrix.
a T Ž .Thus, in all cases, P ™VPV as i™`. This limit is of rank min r,r ) and is independent of the initiali

a Ž .P as long as it is of the rank of at least r ) and certain generic assumptions such as N of full rank . . . are met.0
Ž . T T y1Hence by Eq. 2.7 , K ™KsVPV H R .i

We now show that the matrix MyKHM is stable if and only if rGr ). Indeed

MIKHM VsVLyVPV T HT Ry1 HVLsVP Py1 yV T HT Ry1 HV L .Ž . Ž .
y1 Ž . Ž .But the matrix P , from its definition, Eq. 3.4 , can be seen to satisfy the Lyapounov equation:

Ž T .y1 y1 y1 T T y1 y1 Ž . Ž T .y1 y1L P L qV H R HVsP . It follows that MyKHM VsVP L P . This yields

y1T y1 T T y1P L P PV H R HV LŽ . ] ]w x w xMyKHM V V s V V . 3.5Ž . Ž .] ]
0 L]

Ž . Ž T .y1 y1As the last matrix in Eq. 3.5 is bloc triangular, it has the same eigenvalues as those of P L P and L .]
But the first matrix has the same eigenvalues as those of Ly1 and by construction, L and L have as]

Ž ) .eigenvalues the first min r,r eigenvalues of M and the remaining ones. This yielded the announced result.
An interpretation of how our filter works can now be provided. Suppose that we have committed an error e in

aŽ . k Žthe analysis state vector x t . If no further correction is made, then at time t , it will become M e since noi iqk
.dynamic noise enters the system . Thus if the error lies on the space spanned by the columns of V , that is]

esV f for a certain f, then it dies out automatically, since M k V sV Lk and all the eigenvalues of L] ] ] ] ]
have modulus less than 1. On the other hand, if the error lies on the space spanned by the columns of V, then it
will diverge since M k VsVLk and all the eigenvalues of L have modulus greater than 1. It is therefore
intuitively clear that all efforts should be concentrated on correcting the latter type of error and there is no need

Ž .to correct the former type. Our filter operates precisely on this principle. To see this, consider for simplicity
Ž .the limiting case where K has converged to K. By Eq. 2.8 , a filter error will be transmitted through thei

Ž T .y1 y1multiplication with MyKHM. If the error is of the form Vf, it is transformed into VP L P f by Eq.
Ž . Ž T .y1 y1 y13.5 and is thus attenuated since the matrix P L P have the same eigenvalues as those of L .
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Moreover, the error remains of the same form. If the error is of the form V f, it is simply attenuated by the]
system dynamics, the correction even creating an additional error lying on the space spanned by the columns of

Ž .V because K contains the factor V . But this error will be attenuated next time. Finally, the observational errors
e enter the system only through K, hence lie on the space spanned by the columns of V and will thus be alsoi

attenuated.

3.2. General Õersion

3.2.1. Filter description
Ž . aIn the case where dynamic noise is present, it can be seen from Eq. 2.5 that P will not, in general, havei

low rank even if one starts the algorithm with a low rank one. Therefore, we shall abandon the EKF and content
ourselves with a stable filter. In order that it is so, it is intuitively clear that one must make corrections along all
directions for which the noise is not attenuated by the system. However, for non-linear system, instability may
arise from the linearization error, so it is prudent to make corrections along all directions for which the noise is

Žnot strongly attenuated by the system. This principle could yield a filter with good performance though not
.optimal since the directions for which the error is amplified are likely those where it is large.

Proceeding on this principle, we consider as before the near linear autonomous case so that M , Q , Hiy1, i i i
Ž .and R can be regarded as independent of i over a certain time span and we shall drop this subscript wherei

appropriate. Let V be a matrix whose columns constitute a basis of the invariant space associated with the first r
eigenvectors of M, where r is chosen such that the remaining eigenvalues have small modulus, less than 1 in
any case. We consider the change of basis

Wz zw xxs V V , s x ,] z z W] ] ]

Ž T .y1 T Ž .where Ws V V V and V and W are chosen such that above matrices of basis change are inverse to] ]
Ž .each other. This is always possible since one already has WVsI. This change of basis will be applied

a f t fŽ . fŽ . f Ž . fŽ . fŽ . f Ž .simultaneously to x , x and x . Thus, x t sVz t qV z t where z t sWx t and z t si i ] ] i i i ] i
fŽ . fŽ .W x t . The idea is to perform correction only on z t , that is, to take as correction equations:] i i

a f o f a f˜z t sz t qK y yH x t , z t sz t ,Ž . Ž . Ž . Ž . Ž .i i i i i i ] i ] i

˜ a a aŽ . Ž . Ž .where K is a gain matrix to be defined. Since x t sVz t qV z t , the above equations reduce to Eq.i i i ] ] i
Ž .2.6 with K sV .i i

Note that

L WMVW ]w xM V V s , L sW MV ,] ] ] ]W 0 L] ]

which shows that the first r eigenvalues of M are those of L and the remaining ones are those of L . Also]
Ž X.from this equality, Eq. 2.1 can be written as

t f t a t az t fz t qL z t yz t qWMV z t yz t qWh t 3.6Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .i i iy1 iy1 ] ] iy1 ] iy1 i

t f t az t fz t qL z t yz t qW h t .Ž . Ž . Ž . Ž . Ž .] i ] i ] ] iy1 ] iy1 ] i

a Ž . f Ž . t a Ž . t Ž .The last equation, together with z t sz t , yield the error propagation equation for z : z t yz t] i ] i ] ] i ] i
w a Ž . t Ž .x Ž . a tsL z t yz t yW h t . Because of the attenuation effect of L , the error z yz will be] ] iy1 ] iy1 ] i ] ] ]
Ž Ž . . Ž . Ž .small but will not die out, unless W h t '0 . Ignoring this error, Eq. 3.6 has the same form as Eq. 2.1 in] i
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the EKF, with z playing the role of x, L the role of M and Wh the role of h. Note that the linearized
Ž .observation Eq. 2.2 can be written as

o f t f t fy fH x t qHV z t yz t qHV z t yz t qe ,Ž . Ž . Ž . Ž . Ž .i i i i i ] ] i ] i i

t t f Žwhich can be considered to be the ‘observation equation for z ’ if one regards z as equal to z that is] ]
t f .ignoring the error z yz . These considerations suggest our taking K as the Kalman gain in the filtering] ] i

˜ Ž . Ž .problem for z, that is K is given by Eqs. 2.5 and 2.7 with M replaced by L , H by HV, R by R andi iy1, i i i
T ˜ T T y1Ž . Ž .Q by WQW . Explicitly, according to Eqs. 2.5 and 2.7 , K sP V H R , wherei i i

P sL P LT qWQW T y L P LT qWQW T HT V TŽ .i iy1 iy1

=
y1T T T T T THV L P L qWQW V H qR HV L P L qWQWŽ . Ž .iy1 iy1

To compute P , one needs V and L , which can be obtained from M. But our assumption M sM wasi iy1, i

only postulated in order to simplify the arguments. In fact M evolves with time, albeit slowly. To take thisiy1, i

into account, we draw our inspiration from the computations in Section 3.1.2. Define the sequences

y1y1 T TV sM V L , L sW M V , W s V V V 3.7Ž .Ž .i iy1,1 iy1 i i iy1 iy1, i iy1 iy1 iy1 iy1 iy1

starting from some V . Then, if all the M are equal to M, it can be shown that V converges generally to a0 iy1, i i

limit V with columns spanning the invariant space associated with the first r eigenvectors of M. The L alsoi
Ž .converge to L , satisfying MVsVL . Thus, we shall take as our filter gain the one given by Eq. 2.7 with

P a sV P V T and P defined as above but replacing H, V, L , W, R, Q by H , V , L , W , R , Q . Thei i i i i i i i i i i
Ž .resulting equation for P can alternatively be written as using the same computations in Section 3.2.1i

y1y1 T T T T y1P s L P L qW Q W qV H R H V . 3.8Ž .Ž .i i iy1 i i i i i i i i i

It is instructive to note the similarity of this filter and the one in Section 3.1.1. Indeed, putting

L sV L . . . L , L sVŽ .i i i 1 0 0

and
y1 y1y1 y1 T TU sL . . . L P L . . . L , U sP .Ž . Ž .i i i i i i 0 0

a T Ž . Ž .Then clearly P sL U L and Eqs. 3.7 and 3.8 can be rewritten in terms of L , U asi i i i i i

L sM L ,i iy1, i iy1

y1y1 y1y1 T T T T T y1U s U q L L L Q L L L qL H R H L . 3.9Ž .Ž . Ž .i iy1 i i i i i i i i i i i i

Ž .The last equation is the same as Eq. 3.2 except for an extra term involving Q . The first equation is also thei
Ž .same as the first equation of Eq. 3.1 . Thus this algorithm is reduced to the one in Section 3.1.1 in the case

where Q s0. However, the algorithm in term of L and U may be numerically unstable, since L and Uy1
i i i i i

Ž yi Ž T .yi y1 yitend to diverge. As is shown in Section 3.1.2, L L and L U L converge, but since L hasi i
y1 . Ž . Ž .eigenvalue of modulus greater than 1, L and U themselves diverge. The algorithms Eqs. 3.7 and 3.8 arei i

numerically stable since V is ‘renormalized’ at each step by the division by L . If the first algorithm is used, Li i i

needs to be renormalized periodically to avoid numerical instability.

3.2.2. Stability consideration
Ž . ŽA remarkable property of the Riccati Eq. 2.5 in the linear autonomous case that is the case where M ,iy1, i

.H , Q , R do not depend on i is that under appropriate conditions, its solution converges to a limit such thati i i
Ž .MyKHM is stable, K denoting the corresponding limit of the K as given by Eq. 2.7 . Thus, consider againi
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the nearly linear autonomous case so that we may apply the above result to the P sequence, which satisfies ai

similar Riccati equation. This yields that P converges to P such that the matrixi

LyPV T HT Ry1 HVL 3.10Ž .

is stable. We must emphasize that such an argument does not apply to the case Q s0 considered in Sectioni

3.1.2, since the required controllability condition is violated. Here the matrices P are of a low dimension andi

the controllability condition holds quite generally, in fact as soon as WQW T is non-singular. Therefore, the
gain matrices K of our filter converge to KsVPV T HT Ry1. Then, a direct computation yieldsi

MyKHM VsV LyPV T HT Ry1 HVAŽ . Ž .

Ž . Ž T .y1 y1 Ž .which leads to the same formula as Eq. 3.5 but with P L P replaced by the matrix Eq. 3.10 . Since
the latter matrix is stable, using the same argument as that in the end of Section 3.1.2, we obtain that our filter is
indeed stable.

3.3. Version with forgetting factor

Ž X.In the above derivations of the filter, we have ignored the linearization error in Eq. 2.1 . This error would
Ž . Ž X. fŽ .add to the dynamic noise h t in Eq. 2.1 and thus changes the forecast error covariance matrix P t as giveni i

Ž . Ž .by Eq. 2.3 . A simple and very rough way to take into account this error is to increase the dynamic noise
Ž . fŽ .covariance matrix Q t which amounts to increasing P t . Note that the linearization error does noti i

necessarily increases this matrix but may decrease it, but we argue that it is safer to err on the conservative side.
fŽ .Indeed, increasing P t would lead to the filter relying more on the observed data than on the model, which isi

what one would naturally do when there is doubt on the accuracy of the model. The difficulty, of course, is that
Ž .we do not know how and how much to increase the matrix Q t . But as pointed out in Section 2, even thei

Ž . Ž .specification of Q t is not obvious. So the choice of Q t contains inevitably some part of arbitrariness basedi i

on convenience. By the same reasoning, even when there is no dynamic error, it is still prudent to add an
Ž .artificial dynamic noise covariance matrix Q t . For convenience, we propose taking Q to be such thati i

Ž T .y1 T Ž T .y1L L L Q L L L saU , where a is a positive constant. This choice is not standard, since Q isi i i i i i i iy1 i

not explicit and dependent on i through U , but since the linearization error should increase with the filteriy1
aŽ . tŽ .error x t yx , this choice seems logical. The main reason for it is that it simplifies the algorithm: Eq.iy1 iy1

Ž .3.9 becomes

Uy1 srUy1 qLT HT Ry1 H L . 3.11Ž .i iy1 i i i i i

Ž .where rs1r 1qa . This results in an essentially the same filter as the no dynamic noise version in Section
3.1.1, except that the matrix U is amplified by a factor of 1rr before entering the updating equation.iy1

Ž .The factor r may be interpreted as a forgetting factor. In fact, as is shown in the work of Pham et al. 1995 ,
the filter in Section 3.1.1 can be viewed as a recursive implementation of the minimization of the least squares
criterion with constraint and penalty on the initial state. If, instead of the usual sum of the squares of the errors,

Žone takes the weighted sum of the squares with weight decreasing with the number of steps k going back in
. ktime as r , then the above filter is obtained. This kind of weighting is precisely what a forgetting factor

produces in adaptive algorithms. The primary purpose is to down-weight the earlier observations with respect to
the recent ones, thus enabling the algorithm to follow changes in the underlying process. As a beneficial side

Ž .effect, it also attenuates the error propagation. This is a type of error compensation technique Jazwinski, 1970 .
It actually enhances the stability of the filter. Although the arguments in Section 3.2.2 are no longer valid here
Ž .Q being not constant , those in Section 3.1.1 may be adapted to show this stability.i
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3.4. Initialization of the filter: the EOFs technique

aŽ .To initialize the Kalman algorithm, one needs an initial analysis state vector x t and its error covariance0
a aŽ . amatrix P . A choice thus needs to be made for x t and P . To this end, we propose to use the EOFs0 0 0

technique applied to observed, or possibly simulated, state sequences from the system. Simulation might prove
necessary if no sufficiently long sequence of observed state vectors is available. In the no dynamic noise case, it

Ž .is also quite easy to generate long sequence of state vectors from the model Eq. 2.1 . The initial state may be
Žset arbitrarily if one has taken care to wait until the model has been settled into a stable regime from the

.statistical point of view thus discarding the spin-up phase irrelevant for our purpose.
aŽ . Ž . aIt is quite natural to take as x t the average of the simulated or observed state vectors and as P the low0 0

rank approximation of the sample covariance matrix P of these vectors. 2 To obtain such an approximation, we0

propose to use the EOFs approach, which provides, in a certain sense explained below, the best approximation.
Let V , V , . . . , be the eigenvectors of P of unit L2-norm, ordered according to their eigenvalues l Gl G . . . .1 2 0 1 2

These vectors are called EOFs. In the EOFs method, P approximates to L U LT where0 0 0 0

w xL s V . . . V , U sdiag l , . . . ,l .Ž .0 1 r 0 1 r

This is justified by the following results which state that, ‘‘if x is a random vector of mean zero and
covariance matrix P , then among all its projections onto a linear subspace of dimension r, the one for which0

the error vector has smallest expected squared norm is the projection onto the linear space spanned by
Ž . TV , . . . V ’’ Seber, 1984, p. 179 . It can be seen further that this projection have covariance matrix L U L and1 r 0 0 0

Ž . Žthe error vector has expected squared norm Ý l . Since x has expected squared norm Tr P the trace ofj) r j 0
. Ž . 2P , the ratio Ý l rTr P represents the relative error in square L -norm and can thus be used to assess the0 j) r j 0

accuracy of the approximation for choosing the appropriate value for r.
To apply the SEEK filter, one also needs to specify the matrices R and Q , which are generally unknown.i i

When the dynamic noise is thought to be weak or absent, the no noise version with forgetting factor in Section
3.3 has a special appeal, since it does not require the specification of Q . If R is taken as s 2 times a constanti i

˜ 2Ž . Ž . Ž . Ž .matrix R often an identity matrix , this s need not be known either. Indeed, from Eqs. 2.7 , 3.1 and 3.11 ,
one obtains

2 T T ˜ y1 2 y1 2 y1 T ˜ y1K sL U rs L H R , s U srs U qL H R H L .Ž .i i i i i iy1 i i i i

This means that only the U rs 2 enters the computation and hence only U rs 2 needs to be specified.i 0
2 aŽ .Usually s is very small with respect to U . In any case, since x t is chosen somewhat arbitrarily, it is safe0 0

to err on the conservative side, by taking U to be very large. Then it makes little difference putting0

s 2 Uy1 s0.0

4. An example of assimilation

As an example illustrating the application of our filter, we have considered a simple application of a QG
model of ocean circulation, commonly used to describe the dynamical evolution of geophysical fluids such as

Ž .the atmosphere or the ocean Pedlosky, 1987 . In the present case, it is considered in its layered formulation
Ž .Holland, 1978 . The ocean is thus subdivided into N layers of constant density. Vertical momentum is
transferred vertically by the pressure coupling between layers. Horizontal circulation in each layer is represented

2 Ž .The rank of P is the number of generated vectors minus 1 and thus can and should be rather high, although it is usually far less than0

the system dimension.
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by N horizontal streamfunction fields c , . . . ,c . This model has been extensively used in our group for1 N

process studies or more realistic application problems. Although these models are less complete than the fully
diabatic primitive equation ones, they are known to be nicely adapted to representing fairly faithfully the basic
features of some oceanic processes such as mid-latitude ocean eddy interactions.

4.1. Simulation setup

In the mid-latitudes the ocean circulation is often characterized by very turbulent activity arising from strong
interactions between the so-called mesoscale eddies. The prototype region of this mesoscale activity is the Gulf
Stream system where the barotropic and baroclinic instability of the intense inertial currents produces strong
mesoscale eddies. The energy present in these eddies is at least of the order of the mean current energy and
often much greater. Other western boundary ocean current systems in the world also exhibit such behavior.
Turbulent eddy activity is also encountered in the quieter areas of the ocean universe such as the interior regions
of ocean basins, although with a lesser energy level.

In the present case, a very schematic box-model of this turbulent eddy activity was considered. The domain
is a simple square ocean 4323–340 km wide. A schematic wind stress pattern forces a circulation pattern made
up of a number of mesoscale eddies having in strong non-linear interactions. Dissipation occurs through bottom
friction over the ocean floor and lateral friction through subgrid scale processes.

The numerical domain was divided into a 41=41 grid. The stratification was assumed to be three-layered.
ŽThe QG equations were solved with an integration step of 22 500 s, with six such steps the first being Euler

.forward, the others leap-frog between each observation, yielding a time interval of 37.5 h between observa-
tions.

Observations are supposed to be of the altimetric type, i.e., observations of the instantaneous dynamical
topography. This sea-surface height was directly proportional to the surface streamfunction which is a
prognostic variable of the model. By definition, only the first layer is observed, but the whole state vector, all
the three layers, was of course simulated. One challenge raised by the assimilation process, in addition to that of
coping with the non-linearity, is to succeed in reconstructing flow evolution at great depth while disposing only
of surface information.

The approach chosen is that of the so-called ‘twin experiments’. A reference experiment is performed and the
reference fields will be compared to the fields produced during the assimilation experiment. The latter is

Ž .performed using the ‘pseudo-observations’ which are extracted at the surface only from the reference
experiment. The assimilation will be successful if the flow converges with time towards the reference situation
especially in flow at depth.

This test case clearly has many drawbacks due to the relatively simple model formulation together with the
use of synthetic data and the simplistic domain configuration. It should be therefore regarded as a simple test
case which has to be proved satisfactory before more realistic problems are even contemplated.

4.2. Specification of initial state and error coÕariance matrix

Following the strategy explained in Section 3.4, the choice of the initial flow field and the corresponding
error covariance matrix is made through the model simulation itself. Note that this was done only once and the

Ž .results can be and have been filed for use in different assimilation experiments. In the present study, data for
Ž .the assimilation experiments is again simulated i.e., synthetic data but in a way unrelated to that in the above

simulation.
To generate the flow fields we always consider a statistically steady regime in which the flow has been

integrated for a sufficiently long time in order to avoid the transitional spin-up phase. In the present experiment,
a long sequence of 8000 state vectors was generated of which the first 4000 vectors were discarded to avoid
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Fig. 1. Relative error in square L2-norm vs. the number of retained EOFs.

Ž .such transient effects. The remaining sequence of 4000 state vectors 6250 days was reduced into a sequence of
1000 by retaining only one vector out of four. This operation, known as decimation, was to reduce the
calculation since successive states are quite similar. From this decimated sequence, we estimate the covariance

2 Žmatrix of the state vector and perform an EOFs analysis. Fig. 1 plots the relative error in square L norm as
. tŽ .defined in Section 3.4 vs. the number of retained EOFs. It shows that the covariance matrix of x t is well0

approximated by a matrix of much lower rank, since the above relative error decreases rapidly with the number
of retained EOFs. For 51 retained EOFs, it is already down to 1.55%. However, it decreases much slower in the

Ž .range of higher numbers of retained EOFs for 80 EOFs it is still 0.96% .

4.3. Results of assimilation experiments

We again generated a sequence of reference flow fields starting from an initial field totally unconnected to
that used in the simulation of the above section. Practically, we take as initial field, a computed field at a
random time far removed from the time segment which was used in this simulation. Sequences of 200 state
vectors, corresponding to a period of 312.5 days, were thus obtained. The first layer was taken as the
Ž . Žpseudo -observation and was inputted into our filter algorithm in some experiments, an observational noise

.was also added . The other layers were used as reference fields to evaluate the performance of the algorithm.

Fig. 2. Relative assimilation errors for rank 51 with no forgetting factor.
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Fig. 3. Relative assimilation errors for rank 51 with forgetting factor 0.5.

Ž .Only the version with no dynamic noise was used there is no such noise in our simulation either , but possibly
with a forgetting factor.

Fig. 2 plots the assimilation results using the SEEK filter of rank 51 with no forgetting factor. It can be seen
2 Ž . Žthat the relative errors in L -norm not squared , layer by layer, decrease very rapidly for the first few steps the

.initial errors are 95, 99 and 101% which correspond to points far outside Fig. 2 . However, after several tens of
steps, the errors start to increase again. This seems to result from to the fact that the filter under-evaluates the
error and does not therefore make sufficient correction. Also, using a SEEK filter of only rank 51 induces an
intrinsic error limiting the filter’s performance.

In a second assimilation experiment we used the same setup as before except that the filter now had a
forgetting factor of 0.5. The results are plotted in Fig. 3. It can be seen that the introduction of the forgetting
factor enhances performance by a factor which is roughly two.

The chosen rank of the initial error covariance matrix has a direct effect on the performance of the algorithm.
This is illustrated in Fig. 4, where the setup is the same as in Fig. 3 but the rank is increased to 80. One can see
that the algorithm performs much better. Improvement in performance can also be achieved by a better initial

aŽ .state estimate. In Fig. 5, we have deliberately started the algorithm at a point x t much closer to the0

Fig. 4. Relative assimilation errors for rank 80 with forgetting factor 0.5.
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Fig. 5. Relative assimilation errors for rank 80 with forgetting factor 0.5, special initial estimate.

Ž .reference the relative errors are 4.2, 9.2 and 10.9% . It can be seen from Fig. 5 that the error is significantly
lower. However, this gain of performance is attenuated over time and is not quite as appreciable near the end of
the assimilation period, thus suggesting the relatively weak impact of the choice of the initial state.

Note that in the above simulation experiments, observations were simply taken as being components of the
Žstate vector corresponding to the first layer, no noise being added whereas in the KF model an observational

.noise is assumed . But it would seem that observational noise has no appreciable effect on the performance of
the filter. This is illustrated in Fig. 6, which corresponds to the same situation as that of Fig. 4, except that the

Ž . Žobservation is corrupted by a spatially white noise of standard deviation 30 000 this corresponds to roughly
.10% of the average standard deviation of the state variables . It can be seen that the curves in Fig. 6 are very

Ž .similar to those in Fig. 4. The latter are in fact slightly lower for most but not all of the times.
Looking at the above results, one might be surprised that the error in the first layer stays somewhat higher

Ž .than that in the others, while only this layer has been observed without error in some experiments! . This is
likely due to the higher level of turbulence which is observed at the surface, due to the role of the stratification.
Further, in our filter, correction was made for the whole ocean domain along a limited number of directions,
hence some local accuracy on the first layer may be sacrificed to achieve a global accuracy.

Fig. 6. Relative assimilation errors for rank 80 with forgetting factor 0.5, observational noise 30000.
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5. Conclusion

A modified EKF for the assimilation of oceanographic data into numerical models has been presented. A
Ž .pilot implementation in a test case using altimeter pseudo -data from a strongly non-linear QG model is shown,

which preliminary proves its feasibility. The basic feature for this SEEK filter is the use of a low rank
approximation to the error covariance matrix. This results in the introduction of a reduced size basis of statistical
functions on which one relies in order to describe the evolution of the error covariance matrix. The basis evolves
in time following the model, as a consequence of its non-linearity. On the one hand, the gradient of the system
transition operator depends on the system state so that the error propagation depends on the actual state of the
ocean. On the other hand, the reduced statistical basis was designed specifically to concentrate on the correction
on those directions for which the error is amplified. Although EOFs analysis has been found to be a convenient
and fairly effective way of initializing the reduced basis, this technique, due to its statistical nature, could only
provide a good basis ‘on the average’. Evolution with time is therefore needed in order to adapt the basis to the
particular state of the ocean under analysis at that time. We believe this evolutive property of our basis is crucial
in keeping its dimension low. Fixed basis indeed has been considered in the literature, but since it remains the
same for possibly quite different ocean states, it is likely that a much higher number of basis functions would be

Ž .required. Finally, the introduction of a memory effect ‘forgetting factor’ was also found to be quite beneficial
and it greatly improves the performance of the algorithm.

The chosen test situation was that of an ocean box-model within which several mesoscale eddies were
interacting in an intrinsically active turbulent process. In such testing conditions, our SEEK filter was found to
be fairly effective in monitoring the flow state and evolution disposing of surface-only pseudo-altimeter data.

ŽFurther work will consider a more realistic situation, both from the model point of view real coastal geometry,
. Ž .bathymetry, real wind forcing and the observational one using real data from the TopexrPoseidon satellite .

However, this preliminary application was a necessary step before realistic applications and it provided us with
encouraging results regarding that purpose. We are currently working to implement this filter in a model of

Ž .primitive equations for the tropical Pacific, with very promising preliminary results Pham et al., 1998
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