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ABSTRACT

A four-dimensional variational data assimilation (4DVAR) algorithm is compared to an ensemble Kal-
man filter (EnKF) for the assimilation of radar data at the convective scale. Using a cloud-resolving model,
simulated, imperfect radar observations of a supercell storm are assimilated under the assumption of a
perfect forecast model. Overall, both assimilation schemes perform well and are able to recover the super-
cell with comparable accuracy, given radial-velocity and reflectivity observations where rain was present.
4DVAR produces generally better analyses than the EnKF given observations limited to a period of 10 min
(or three volume scans), particularly for the wind components. In contrast, the EnKF typically produces
better analyses than 4DVAR after several assimilation cycles, especially for model variables not function-
ally related to the observations. The advantages of the EnKF in later cycles arise at least in part from the
fact that the 4DVAR scheme implemented here does not use a forecast from a previous cycle as background
or evolve its error covariance. Possible reasons for the initial advantage of 4DVAR are deficiencies in the
initial ensemble used by the EnKF, the temporal smoothness constraint used in 4DVAR, and nonlinearities
in the evolution of forecast errors over the assimilation window.

1. Introduction

Data assimilation at the convective scale poses nu-
merous challenges. Doppler radars provide sufficient
temporal and spatial coverage to resolve moist convec-
tion, yet they observe only a single component of the
velocity and reflectivity, which is a complicated func-
tion of the microphysical species. Because balances like
geostrophy between the wind and mass fields are weak
or absent, the assimilation scheme must use other dy-
namical information in order to initialize unobserved
variables such as temperature. Two methods that incor-
porate such information are four-dimensional varia-
tional data assimilation (4DVAR; Lewis and Derber
1985; Le Dimet and Talagrand 1986; Courtier and Ta-
lagrand 1987; Klinker et al. 2000) and the ensemble
Kalman filter (EnKF; Evensen 1994; Houtekamer and

Mitchell 1998). In this paper, we compare 4DVAR and
the EnKF in the context of convective-scale assimilation.

Both 4DVAR and the EnKF have shown promise at
convective scales. Using a limited domain and observa-
tions of a single convective cell, Sun and Crook (1997,
1998) demonstrated a 4DVAR scheme for both simu-
lated and real radar observations. Similar techniques
have also been applied to the assimilation of clear-air
radar returns in real time (Sun and Crook 2001; Crook
and Sun 2002). More recently, the EnKF has also been
tested successfully for the assimilation of simulated ra-
dar observations of single convective cells (Snyder and
Zhang 2003; Zhang et al. 2004) and for the assimilation
of real radar observations of a supercell (Dowell et al.
2004).

Previous comparisons of 4DVAR and the EnKF are
limited largely to idealized, low-order systems. In such
systems, the performance of the EnKF has compared
favorably to that of 4DVAR (Hansen and Smith 2001;
Anderson 2001; Hansen 2002). The EnKF has also been
compared with a weak-constraint 4DVAR approach
for the assimilation of microwave brightness tempera-
ture into a land surface model (Reichle et al. 2002). The
EnKF is yet to be evaluated against 4DVAR for high-
dimensional systems or for realistic atmospheric flows.
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Aside from direct comparisons of the schemes, esti-
mation theory also provides insights into the relation of
4DVAR and the EnKF. In the theoretical context of a
linear forecast model, linear observational operator,
and Gaussian statistics, 4DVAR and the Kalman filter
give identical results at the end of the assimilation when
model error is neglected (Lorenc 1986, section 4h). Fur-
thermore, under these same linear, Gaussian assump-
tions and for sufficiently large ensembles, the EnKF
agrees with the Kalman filter. Inherent nonlinearities at
the convective scale (and the resulting non-Gaussian
distributions) are thus a potential cause of differences
between 4DVAR and the EnKF. In the case that back-
ground and observation errors remain Gaussian but
model dynamics are nonlinear, 4DVAR yields the
maximum likelihood estimate, that is, the conditional
mode of the posterior probability density function (pdf)
(Cohn 1997, section 3.3). It is not clear in general how
much the conditional mode improves on the EnKF
analysis, which is linear and depends only on the second
moment of the prior pdf, though simple examples have
shown the importance of non-Gaussian effects when
nonlinearity is sufficiently strong (Anderson and
Anderson 1999; Bengtsson et al. 2003).

In most geophysical problems, however, the dimen-
sion of the state is so large that practical schemes are
inevitably a compromise between computational neces-
sities and theoretically optimal approaches. For ex-
ample, the EnKF suffers sampling errors from limited
ensemble sizes, and, since the matrices are too large to
manipulate easily, 4DVAR must use tractable, and
typically idealized, models of the background error co-
variances. Minimization of the 4DVAR cost function is
also often difficult without the addition of constraints to
improve the conditioning of the problem and speed the
minimization. Thus, differences in 4DVAR and EnKF
performance are expected from purely practical consid-
erations, in addition to any effects of nonlinearity.

Certain aspects of convective-scale assimilation make
the comparison of 4DVAR and the EnKF particularly
interesting. First, convective dynamics are distinctly
nonlinear. The microphysical processes that drive the
convection include both nonlinear thresholds (such as
the onset of condensation once a parcel reaches satu-
ration) and transformations among species that are
strongly nonlinear functions of their concentrations.
Second, the background error covariances are espe-
cially crucial for the EnKF because of the need to
spread information from the observations to the unob-
served components of velocity and the temperature
field. At the same time, the balances between the ve-
locity and mass field that hold at synoptic and larger
scales typically do not pertain at convective scales, so

that a priori modeling of the background covariances
becomes much more difficult.

To facilitate the comparison of the two approaches,
we will consider here only simulated radar observa-
tions, and all our experiments will assume a perfect
forecast model. Even with these simplifications and us-
ing a limited computational domain, the problem is still
large enough that computational constraints are acute
and both schemes involve compromises relative to
theoretically optimal approaches. Thus, our compari-
son is between specific implementations of each scheme
and intermingles the effects of such practical compro-
mises in the schemes and fundamental differences in
how the two algorithms perform in convective-scale as-
similation. Nevertheless, this comparison is still of in-
terest both as guidance for the development of future
convective-scale assimilation systems, and as the first
comparison of 4DVAR and the EnKF for a realistic
flow.

The results for both 4DVAR and the EnKF could
also potentially be improved through further tuning of
each algorithm. Since the 4DVAR scheme used here
has enjoyed a longer period of development than that
of the EnKF, it is possible that further tuning of the
EnKF could change the comparison with 4DVAR sig-
nificantly. Our experience, however, suggests that ben-
efits of further tuning will not be huge and will not
change our conclusions.

The EnKF presented here clearly provides probabi-
listic information about both the analysis and forecasts,
whereas the 4DVAR scheme, as implemented, does
not. This is arguably a practical advantage of the EnKF.
In principle, however, 4DVAR can be extended to be
the basis for an ensemble forecasting system, for ex-
ample, through the use of the Hessian of the cost func-
tion in initializing the ensemble perturbations. We have
tried to confine the comparison of the schemes to those
aspects that are available for both implementations.

The organization of the paper is as follows: first the
methodology for the comparison of the two methods is
detailed in section 2. In section 3, the 4DVAR and the
EnKF algorithms are described, with emphasis on the
details of each implementation. In addition, new fea-
tures with respect to previous works (Snyder and
Zhang 2003; Zhang et al. 2004) are introduced, namely,
the assimilation of the rainwater content and the use of
a correlation function to localize the ensemble covari-
ances. The assimilation results are presented and com-
pared in section 4. The effect of assimilating the rain-
water content is examined. The performance of the two
methods is also compared when the assimilations begin
both at the cumulus stage and at the mature stage of a
simulated storm. The effect of observational time dif-
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ferences in a radar volume owing to sequential scanning
was studied by Sun and Crook (1998). This problem is
revisited in the context of the EnKF and contrasted
with the results of 4DVAR. We discuss the results and
summarize the findings in section 5.

2. Methodology

The cloud model of Sun and Crook (1997) is used in
this study to generate a control simulation of a supercell
storm and as the assimilation model for 4DVAR and
the EnKF. Thus, the two methods are compared here in
a perfect-model context. The prognostic variables are
the velocity components (u, �, w), the liquid water po-
tential temperature (�l), the rainwater mixing ratio (qr),
and the total water mixing ratio (qt), which is the sum of
qr and the vapor and cloud water contents. The model
has 2-km horizontal resolution and 500 m between ver-
tical levels. The domain of 140 � 140 � 17.5 km3 is
large enough to mitigate the effect of the boundaries on
the simulated storm within the time the assimilations
are performed. The model equations are integrated
with a time step of 5 s.

The initialization of the control simulation begins
with the 0000 UTC 25 May 1997 Oklahoma City, Okla-
homa, sounding. This sounding is particularly favorable
to the development of supercell storms and is depicted
in Snyder and Zhang (2003). The original wind sound-
ing is used here, whereas 7 m s�1 was subtracted from
the u component at all levels in Snyder and Zhang
(2003) and Zhang et al. (2004) to keep the storm within
their smaller domain. A warm bubble is then superim-
posed on the horizontally uniform fields determined by
this environmental sounding. The warm bubble is cen-
tered at 1.25-km altitude, is 16 km wide and 2 km deep,
and is 1°C warmer than the environment. There is nei-
ther precipitation nor cloud in the initial conditions,
and the humidity field is horizontally homogeneous as
prescribed by the sounding.

Observations of radial velocity Vr and rainwater mix-
ing ratio qr are simulated every 5 min (the approximate
temporal resolution of the U.S. operational radar net-
work) from the control simulation at those grid points
where qr exceeds 0.13 g kg�1, or approximately 12 dBZ,
as seen by a single radar located at the southwest corner
of the domain. The fall speed of the precipitation is
taken into account in the calculation of the radial ve-
locities. Thus, the radial velocity is a weakly nonlinear
function of the rainwater content qr in addition to the
three wind components. A 1 m s�1 random Gaussian
noise is added to the radial velocities before the assimi-
lation, and this value is also used as the observation-
error standard deviation for the radial-velocity obser-

vations in both assimilation algorithms. No noise is
added to the qr observations, although a standard de-
viation of 0.2 g kg�1 is assumed for the qr observation
errors in both 4DVAR and the EnKF. This corre-
sponds to having relatively little confidence in small
rainwater contents and great confidence in large rain-
water contents and was chosen to obtain the best results
when assimilating qr. Both 4DVAR and the EnKF
analyses are almost insensitive to the small noise in the
radial-velocity observations.

3. Assimilation algorithms

This section discusses the specifics of the two assimi-
lation schemes. More general background on the algo-
rithms can be found in Sun and Crook (1997) and Sny-
der and Zhang (2003).

a. The 4DVAR algorithm

The 4DVAR analysis xa is obtained through the
minimization of a cost function J that measures the
misfit between the model trajectory Hi(x) and the ob-
servations yi at a series of times ti, i � 1, . . . , n. The
model error is neglected and the model is thus used as
a strong constraint. The cost function is given by

J�x� � �x � xb�TB�1�x � xb�

� 	
i


Hi�x� � yi�
TR�1
Hi�x� � yi� � Jp, �1�

where x is the model state at t0 (the beginning of the
assimilation window), xb is a background or prior esti-
mate of x, and has error covariance matrix B, R is the
observational-error covariance matrix, and Hi is the
generalized observational operator that includes the
full nonlinear model integration from t0 to ti and the full
nonlinear operator to convert from model space to ob-
servational space. The term Jp consists of a penalty on
3D divergence and of spatial and temporal smoothing
constraints, which are described in Sun and Crook
(1994) and in Lin et al. (2002).

The minimization of the cost function is achieved by
adjusting the model initial condition x at t0. The mini-
mization proceeds by integrating the full nonlinear
model through the end of the assimilation window to
evaluate the cost function. Then the adjoint model is
integrated backward in time to give the variation of the
cost function with respect to x. This information is used
iteratively in a descent algorithm, which is terminated
after 100 iterations in all experiments here. (Thus, the
minimization may stop before it is completely con-
verged.) The solution at the end of the assimilation
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window becomes the first guess for the minimization in
the next assimilation cycle.

The forecast-error covariance matrix B is difficult to
model, especially at the convective scale where balance
constraints cannot be applied. For this reason, this
4DVAR scheme relies mainly on observations, and the
role of the background-error covariance matrix is to
control the analysis in data voids. This is accomplished
as follows. First, xb is simply the environmental sound-
ing. Thus, the analysis from the previous cycle is only
used as a first guess for the minimization. Second, the
covariances between model variables are neglected in
B, which becomes a diagonal matrix. It should be noted
that spatial correlations for xb are still implicit in J,
however, because of the spatial smoothness constraints
in Jp. Sun and Crook (2001) found that the effect of the
spatial smoothness constraint is equivalent to a homo-
geneous correlation function implemented through the
background-error covariance matrix B. Third, the back-
ground-error variances are set to infinity wherever ob-
servations are available, thereby giving no weight to the
background in those regions, while they remain finite in
regions where no radar observations exist.

Thus, the covariances between model variables do
not appear explicitly in J. They are achieved implicitly
through the numerical model (as represented in Hi).
The background term controls the analysis in data-void
areas.

b. An ensemble Kalman filter

Unlike 4DVAR, the EnKF assimilates the observa-
tions sequentially. Given observations yi at time ti, the
scheme requires an ensemble of ne forecasts from the
previous analysis time, ti�1. The EnKF updates x f

i, the
ensemble mean of those forecasts, according to

x i
a � x i

f � K̃
yi � H�x i
f��, �2�

where xa
i is the ensemble-mean analysis at ti, and H is as

in 4DVAR except it does not include propagation of
the state in time.

The matrix K̃ is a generalization of the Kalman gain
matrix

K � Pi
fHT�HPi

fHT � R��1, �3�

where Pf
i is the forecast-error covariance matrix at ti,

and H is the observational operator, which must be
linear. To obtain K̃, the covariance matrices in the defi-
nition (3) of K are replaced by sample covariances
based on the ensemble; that is, Pf

iH
T → (ne � 1)�1 	j(xf

i, j

� x f
i)[H(xf

i,j) � H(xf
i)]T and HPf

iH
T → (ne � 1)�1

	j[H(xf
i,j) � H(xf

i)][H(xf
i, j) � H(xf

i)]T, where overbars
denote ensemble averages. Note that in these expres-

sions, the full nonlinear observational operator H is
used.

The EnKF also updates the deviations of the forecast
ensemble from x f

i to account for the reduction of un-
certainty given the observations yi. This procedure pro-
duces an analysis ensemble at ti, which then serves as
initial conditions for the ensemble forecast to ti�1. The
update of the ensemble members used here follows the
“square root” method of Whitaker and Hamill (2002).

For linear systems (model and observational opera-
tors) with Gaussian errors, the EnKF converges to the
Kalman filter as the ensemble size becomes large. In
that case, the EnKF analysis xa

i given by (2) minimizes
the cost function

J�x� � �x � x i
f�T�Pi

f��1�x � x i
f�

� 
H�x� � yi�
TR�1
H�x� � yi�. �4�

Comparing (4) with (1) shows that the 4DVAR cost
function (as implemented here) includes an additional
term, Jp, and uses xb and its assumed covariance matrix
rather than a prior forecast. [Although the 4DVAR
J(x) fits observations over the entire assimilation win-
dow while (4) involves only observations at a single
time, sequential assimilation with the Kalman filter in
the linear, Gaussian case yields an identical analysis at
the end of the window (Lorenc 1986).] Thus, in the
experiments that follow, the 4DVAR and EnKF results
will differ because of differences in the underlying cost
functions, and because of the nonlinearities inherent in
moist-convective dynamics and in the observational op-
erators, in addition to sampling errors in the EnKF and
incomplete minimization for 4DVAR.

Unlike the 4DVAR scheme used here, the forecast-
error covariance matrix is meant to play a central role
in the assimilation with the EnKF. The forward propa-
gation of the ensemble between observation times in-
corporates the information on the dynamics into the
ensemble and then Pf is derived from the forecast en-
semble with a single further assumption, namely that
the covariances are spatially local as described in sec-
tion 3b(2) below.

All the experiments with the EnKF use an ensemble
size of ne � 100. This was chosen in part to make the
number of forward model integrations identical to
4DVAR, which uses 100 iterations in the minimization
of J(x). The computational cost of the two schemes is
thus also broadly comparable.

Because sampling errors and other effects tend to
make the ensemble variance systematically too small in
the EnKF, many implementations of the EnKF also
employ techniques to increase the ensemble variance.
No such techniques are used here. In particular, experi-
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ments revealed that the “covariance relaxation” tech-
nique of Zhang et al. (2004) degraded the quality of the
EnKF analyses. We believe that covariance relaxation
is less effective here than in the Zhang et al. results
because of our use of localized and spatially correlated
noise to generate the initial ensemble perturbations,
which is described in the subsection below. In compari-
son to the spatially white perturbations used in Zhang
et al., these perturbations maintain the ensemble vari-
ance better and produce more realistic structure in the
early assimilation cycles.

1) ENSEMBLE INITIAL CONDITIONS

Before any observations are assimilated, the initial
ensemble should reflect all prior information and its
uncertainty. Beyond the use of the (known) environ-
mental sounding for u, �, �l, and qt, however, the initial
conditions for the ensemble are determined only quali-
tatively by other physical information, such as spatial
smoothness or the requirement that rain be present in
the model only in regions of significant reflectivity. In
their basic experiments, Snyder and Zhang (2003) ig-
nored such prior physical information and simply gen-
erated initial ensemble members by adding random
noise, which was independent at each grid point and for
each variable, to the environmental sounding.

Here, we construct ensemble initial conditions that
are both spatially smooth and localized where reflec-
tivity observations show rain is present. For each of the
six model variables �, the fields for the ensemble mem-
bers are perturbed from the ensemble mean � using the
following relation:

��l, m, n� � ��l, m, n� � 	
�i, j,k�∈S

r�i, j, k� exp��
| i � l |

lh

�
| j � m |

lh
�

|k � n|
l�

�, �5�

where indices (l, m, n) include all model grid points of
the computational domain. Each r(i, j, k) is a random
number sampled independently from a normal distri-
bution with zero mean and variance 
2

�, where 
2
� is

chosen for each variable to obtain an appropriate initial
ensemble spread. The set of gridpoint indices S in-
cluded in the sum in (5) is determined by the available
reflectivity observations, as will be described below.
The horizontal correlation length scale lh is 4 km and
the vertical correlation length scale l� is 2 km, both of
which were specified according to the correlation
length scales in the control simulation and by trial and
error. The idea is that spatially smooth perturbations
should be inserted in the initial ensemble only in the
vicinity of observation locations.

The first set of observations is also used to initialize
the ensemble mean. For the cases where qr is assimi-
lated, qr is initialized with its observed value. Other-
wise, the initial ensemble mean of qr is set to zero. The
liquid water potential temperature �l initial ensemble
mean is modified according to the definition

�l � ��1 �
L�

cpT
�qc � qr��, �6�

assuming zero cloud content qc. The contribution of qr

to �l can be as large as �20 K, and should thus be taken
into account in the initial conditions of �l. Then, the
model variables u, �, �l, qr, and qt are perturbed as in
(5), with the summation running over the set S of all
gridpoint indices (i, j, k) where an observation is avail-
able. All the negative values produced for qr during this
process are set to zero. The liquid water potential tem-
perature �l and qt are adjusted according to the added
perturbation on qr. Finally, the vertical velocity field is
obtained by integrating the anelastic continuity equa-
tion with the perturbed horizontal velocity fields.

2) LOCALIZATION

The limited ensemble size results in sampling error
and means that small correlations between widely sepa-
rated state variables are typically poorly estimated
(Houtekamer and Mitchell 1998; Hamill et al. 2001).
For this reason, each observation is allowed to influ-
ence only state variables located within a certain dis-
tance of the observation. This localization also reduces
the computational cost of the analysis in the EnKF be-
cause only a portion of the model state is updated.

More precisely, the localization is applied as in
Houtekamer and Mitchell (2001) by taking the Schur
(or element by element) product of a compactly sup-
ported correlation function, which depends only on the
3D distance between a given observation and the state
variables, with the sample covariances from the en-
semble. The correlation function is the compactly sup-
ported fifth-order piecewise rational function of Gas-
pari and Cohn (1999). Defining a correlation length
scale lc as in Daley (1991, p. 110),

lc �
1


�f ��0��1�2 ; �7�

this function f is approximately equal to 0.6 at one cor-
relation length scale lc and is zero for distances greater
than 2�10/3 lc (see section 4c of Gaspari and Cohn
1999).

We have explored the optimal correlation length
scale for the localization in the assimilation from 20 to
60 min where both Vr and qr are assimilated. Figure 1
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shows an analysis error index, which is calculated as
follows. Defining the root-mean-square error (over the
entire domain) for model variable i (in m s�1 for the
wind components, in K for �l, and in g kg�1 for qr and
qt) at time j as �i,j, the error index � is

� ��	
j�to

tf

	
i�1

6

��i, j�
2, �8�

where the subscript i runs over the six model variables
and subscript j over analysis times. This error index is
computed as a function of lc for ensembles having 50,
100, and 200 members. The results in Fig. 1 are based
on a single realization of the initial ensemble for each
ensemble size. As shown by Snyder and Zhang (2003)
(and as will be seen later in Table 2, section 4), other
realizations of the initial ensemble will produce some
variation in these rms errors.

Overall, Fig. 1 is broadly similar to Fig. 4 of Houteka-
mer and Mitchell (2001): Increasing the ensemble size
from 50 to 100 members improves the results signifi-
cantly, while a further doubling of the ensemble size to
200 members yields only marginal improvements. This
justifies our choice of a 100-member ensemble. In ad-
dition, the error index is minimum and its variation is
only 5% when lc is between 2 and 3 km for an ensemble
of 100 members. A correlation length scale of 2 km is
chosen to make the EnKF as efficient as possible, given
the ensemble size of ne � 100. For lc � 2 km, the in-
fluence of an observation goes to zero at a distance of
7.3 km.

Since previous studies with the EnKF (Snyder and
Zhang 2003; Zhang et al. 2004) have localized by simply

setting the influence of an observation to zero beyond a
given cutoff radius, we also measured the relative ben-
efits of using the aforementioned correlation function.
For the same 50-member ensemble used for the results
shown in Fig. 1 and with the cutoff radius approach, the
lowest error index we obtained is 0.22 with a 4-km cut-
off radius of influence. Thus, the use of the correlation
function greatly improves the results relative to the ex-
periments where the cutoff radius is employed.

4. Comparison between the EnKF and 4DVAR

The performance of the EnKF and 4DVAR algo-
rithms will now be compared. The 4DVAR analysis
uses a 10-min assimilation window. The initial en-
semble mean in the EnKF is also used as the first guess
for the 4DVAR minimization in the first cycle. To help
interpret the results, Table 1 shows the number of avail-
able observations as a function of time during the as-
similation.

a. Effect of assimilating the rainwater content

For these experiments, the assimilations begin at t �
20 min into the control simulation, at which time pre-
cipitation has just begun to form, and end after 40 min,
at t � 60 min. The first assimilation window of 4DVAR
is between 20 and 30 min into the simulation and in-
cludes observations at 20, 25, and 30 min. The EnKF is
initialized at 20 min, and the first data are assimilated at
20 min by the EnKF.

In what follows, we will compare the 4DVAR and
EnKF analyses only at the end of the 4DVAR assimi-
lation windows. This is because at times before the end
of its assimilation window, the 4DVAR results depend

FIG. 1. Error index of the EnKF analysis as a function of the
correlation length scale for ensembles with 50, 100, and 200 mem-
bers. The error index is calculated for assimilations from 20 to 60
min in which both Vr and qr are assimilated. See Eq. (8) in the text
for an explicit formula of the error index.

TABLE 1. Number of observational grid points as a function of
time (min). At each grid point, radial velocity and rainwater con-
tent are available.

Time (min) Observations

20 17
25 150
30 613
35 1114
40 1490
45 1800
50 2063
55 2195
60 2316
65 2521
70 2677
75 2945
80 3186
85 3412
90 3492
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on the assimilation of future observations while the
EnKF analysis does not. In the figures, 4DVAR analy-
sis errors will be shown only at the end of each 10-min
assimilation window. For the EnKF, analysis errors will
be shown at each observation time, together with errors
for the 5-min forecast from the previous analysis in
order to indicate the reduction (or increase) of error by
the assimilation of observations with the EnKF.

Figure 2 shows the rms error (over the entire do-
main) of the three wind components when only the
radial velocities are assimilated with the EnKF and
4DVAR. The 4DVAR assimilation produces a better
analysis of the horizontal wind components over this
period. The analysis of the vertical motion is also better
with 4DVAR except at 50 and 60 min where the EnKF
gives better results.

Figure 3 is similar to Fig. 2 except that the rainwater
content qr is also assimilated. The results with the
EnKF are much better than in the previous experiment
(except at 30 min where the assimilation of qr results in
larger errors for the wind components), while those
with 4DVAR are only slightly improved. With the as-
similation of both Vr and qr, all wind-component errors
at 50 and 60 min are smaller with the EnKF than they
are with 4DVAR, while 4DVAR still improves on the
EnKF for the horizontal wind components at 30 and 40
min. For this experiment, the vertical motion from the
EnKF analysis has a smaller rms error than that from
4DVAR starting as soon as 40 min.

Figure 4 shows the error in the thermodynamic and
condensate variables when only the radial velocities are
assimilated. The 4DVAR scheme again has a small ad-
vantage over the EnKF at 30 min, except for qr. For the

analyses at 40, 50, and 60 min, the EnKF and 4DVAR
give similar results for the condensates, and the �l

analysis is better with the EnKF.
Figure 5 is the same plot as Fig. 4 except that the

rainwater content qr is also assimilated. The errors are
reduced in both methods relative to the case with only
observations of the radial velocity, but the reduction is
significantly larger for the EnKF, so that the 4DVAR
analyses at 60 min have roughly 3 times the rms error of
the EnKF analyses when both Vr and qr are assimilated.
The assimilation of qr has a negative impact on the
temperature up to 30 min for the EnKF analyses. Nev-
ertheless, the EnKF analysis error of �l is already
smaller than the 4DVAR analysis error by 40 min.

The performance of the EnKF can vary from one

FIG. 4. The forecast and analysis rmse of the liquid water po-
tential temperature �l, the rainwater content qr, and the total
water content qt of the EnKF (thin lines) and 4DVAR (thick
lines) analyses. Only the radial velocities are assimilated.

FIG. 2. The forecast and analysis rmse of the three wind com-
ponents during the assimilation with the EnKF (thin lines). The
4DVAR wind analysis root-mean-square error at the end of each
assimilation window is given by the thick lines with the squares.
Only the radial velocities are assimilated.

FIG. 3. As in Fig. 2, but both the radial velocity, Vr, and the
rainwater content, qr, are assimilated.
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randomly chosen realization of the initial ensemble to
the next [see Snyder and Zhang (2003), their Fig. 5], but
the assimilation of the rainwater content qr reduces that
variability. Using a 25-member ensemble and assimilat-
ing only radial velocities, the analysis error index is
relatively high in a few realizations (two of seven; Table
2) and the performance of the filter is very variable.
This is due, in part, to the small ensemble size (25 mem-
bers) used here. When qr is assimilated in the same
experiments, the error index is always smaller than for
the same experiment without the assimilation of qr.
This is especially true for the two experiments where
the error index is close to 1.3 without the assimilation of
qr. The results are also much less variable when qr is
assimilated. The variability of the results is greatly re-
duced for an ensemble size of 100 members.

b. Assimilation beginning at the mature stage

We turn now to the case where the assimilation be-
gins at the mature stage of the storm. Thus, at the be-

ginning of the assimilation, the ensemble mean for the
EnKF and the first guess for the 4DVAR minimization
are farther away from the control simulation than in the
previous experiments. Both radial velocity and rainwa-
ter content are assimilated with the two methods. The
EnKF is initialized at 50 min while the first assimilation
window of 4DVAR is between 50 and 60 min, both
assimilations including observations at 50 min.

Except for the vertical velocity at 80 and 90 min, the
4DVAR wind analysis in this case is better than that of
the EnKF, as illustrated by Fig. 6, which shows the rms
errors for the wind components. Figure 7 shows the rms
analysis errors for the thermodynamic and condensate
variables. For these variables, the errors in the EnKF
analyses are smaller than those from 4DVAR, except
for �l at 60 min.

FIG. 6. The forecast and analysis rmse of the three wind com-
ponents of the EnKF (thin lines) and 4DVAR (thick lines with
squares) analyses. The radial velocity Vr and the rainwater con-
tent qr are assimilated. The assimilation is started at the mature
stage of the storm.

FIG. 7. As in Fig. 6 but for the liquid water potential temperature
�l, the rainwater content qr, and the total water content qt.

FIG. 5. As in Fig. 4, but both the radial velocity, Vr, and the
rainwater content, qr, are assimilated.

TABLE 2. Error index [Eq. (8)] of the EnKF analysis for en-
sembles with 25 and 100 members after different realizations. For
each initial ensemble (realization), the assimilation is performed
without and with qr. The statistics are calculated on a 34 � 34
gridpoint horizontal domain.

25 members 100 members

Expt No. Vr only Vr and qr Vr only Vr and qr

1 1.30 0.29 0.24 0.17
2 0.40 0.33 0.19 0.18
3 0.29 0.27 0.23 0.19
4 0.64 0.30 0.20 0.17
5 0.35 0.28 0.22 0.18
6 1.27 0.55 0.19 0.18
7 0.39 0.30 0.21 0.17
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Figure 8 shows the vertical velocity field w at 4.75-km
altitude during the first assimilation window of
4DVAR. The 4DVAR first guess (at 50 min) is zero
vertical motion. In the EnKF, the vertical velocity is
initialized by integration of the continuity equation.
Since the initial (prior) ensemble-mean horizontal wind
is uniform, the initial mean vertical motion is zero ex-
cept for small variations arising from sampling errors.
The assimilation in the EnKF at 50 min produces large
analysis increments in w because correlations between
the vertical motion and the horizontal wind field (and
thus the radial velocities) were created by the vertical
integration of the continuity equation in the generation
of the initial ensemble. The EnKF analysis at 50 min is
still far from the control simulation and the root-mean-

square analysis error is actually larger for the posterior
than the prior EnKF estimate, as indicated in Fig. 6. At
55 min the EnKF assimilation becomes closer to the
control simulation. After three sets of data have been
assimilated (i.e., at 60 min), both analyses contain a
strong cell in the correct location. The maximum verti-
cal velocity in the center of the storm, however, is still
smaller in the EnKF analysis (20.6 m s�1) than in the
control simulation (25.7 m s�1), while the 4DVAR
analysis lies in between (22.8 m s�1).

The discrepancies between root-mean-square analy-
sis errors in 4DVAR and in the EnKF at 60 min are
interesting because this is the only time when the two
algorithms use the same information. As discussed in
section 3, the two algorithms are not based on the same

FIG. 8. Horizontal cross sections of the vertical velocity field w at 4.75-km altitude
between 50 and 60 min for the experiment beginning the assimilation at the mature
stage of the simulated storm. The 4DVAR first guess is identical to the initial ensemble
mean of the EnKF at 50 min except for noise caused by the averaging over a finite
number of ensemble members in the EnKF. Note that the area presented is a limited
region of the full computational domain. (top) Control simulation. (middle) EnKF
analyses. (lower right) 4DVAR analysis. Contour interval is 5 m s�1 with dashed lines
indicating negative values.
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cost function, and for this reason, results from the two
methods are expected to differ. In particular, the
4DVAR background-error variances are infinitely
large in data regions and this feature cannot be repre-
sented within the EnKF. For this reason, the 4DVAR
algorithm used in this study is not very sensitive to the
error in the first guess for the minimization. (Since the
minimization proceeds for a fixed number of iterations,
there is some dependence on the first guess, which can
be seen in comparing the results in Figs. 3 and 6 for the
window between 50 and 60 min.) On the contrary, the
initial ensemble affects the performance of the EnKF.
In what follows, we examine the extent to which the
ensemble variance in regions of observations is an issue
for the EnKF.

An indication that the EnKF is functioning properly
is that the ensemble standard deviation should be close
to the actual ensemble-mean error. One way of verify-
ing this property is by studying the innovation (obser-
vation-minus-forecast) statistics. Defining the innova-
tion vector at the ith time by di � yi � H(x f

i), the
expectation of the innovation matrix can be estimated
from the ensemble as in Mitchell and Houtekamer
(2000, section 3a):

E
didi
T� � �ne � 1��1 	

j

H�xi,j

f � � H�xi
f��

� 
H�xi, j
f � � H�xi

f��T � R, �9�

where the index j refers to an ensemble member.
Figure 9 shows the root mean of the trace of the

innovation matrix [from the left-hand side of (9)] and
the root mean of the ensemble variance plus the obser-
vational error variance [from the right-hand side of (9)]
for (a) the radial velocities and (b) the rainwater con-
tent for the experiment beginning at the mature stage
of the storm (the experiment shown in Figs. 6 and 7).
Figure 9 also shows the same statistics after the analysis
(lower points on the curves). Initially, we set the en-
semble standard deviation to be larger than the inno-
vation to mimic the fact that 4DVAR has infinite back-
ground-error variance at the observation locations.
This produces a close fit to the observations (at the
level of the observational error) after the analysis at 50
min. After only a few assimilation cycles the two curves
almost coincide, in agreement with (9). Meanwhile, the
analysis residuals become very close to the observa-
tional error. The error of the mean also agrees with the
ensemble standard deviation for other model variables
(not shown). Thus, the ensemble spread from the EnKF
yields a good estimate of the magnitude of the error of
the ensemble mean through most of the assimilation,
though it is somewhat too large in the first few cycles.

Additional experiments using doubled and halved
initial ensemble variances (not shown) did not improve
the EnKF results. The results of these tests (and that
shown in Fig. 9) indicate that the performance of the
EnKF relative to 4DVAR is not controlled by deficien-
cies in the magnitude of the ensemble spread, nor is it
explained by the close fit to the observations that fol-
lows from the infinite background-error variances at
observation locations in 4DVAR. We have also shown
(see Fig. 1) that increasing the ensemble size from 100
to 200 improves the EnKF results only slightly. The
differences between the 4DVAR and EnKF analyses at
60 min are therefore most likely related either to other
deficiencies in the initial ensemble used for the EnKF,
or to other differences in the cost functions for the two
schemes, such as the temporal smoothness constraint
used in 4DVAR, or to nonlinearities in the forecast
evolution.

c. Observational error due to observational time

A frequent assumption in radar data assimilation is
that all observations in a given radar volume, which are
typically collected over a span of 5 min, are valid at a
single time. Here we examine how this assumption in-
fluences the comparison of 4DVAR with the EnKF
through two experiments.

In the first experiment all observations on a given
model level are extracted from the control simulation
every 10 s (i.e., every other model time step); this pro-
cess begins with the lowest model level, and continues
with each successively higher level until 5 min (or 60

FIG. 9. Rms observation-minus-forecast and observation-minus-
analysis residuals (full lines) for (a) radial velocity and (b) rain-
water content in the EnKF experiment beginning at the mature
stage of the storm. The dotted line with circles is the root mean of
the ensemble variance plus the observational error variance
[right-hand side of Eq. (9) in the text].
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time steps) have elapsed, at which point observations
from all remaining six vertical levels are extracted.
Then all these observations are assimilated using
4DVAR and the EnKF as if they were simultaneous
observations every 5 min. For example, the assimilation
schemes assume that the data collected between 20 and
25 min are valid at 25 min. The EnKF is initialized at 25
min and the first assimilation window of the 4DVAR is
between 20 and 30 min. No data are assimilated at 20
min in either algorithm. The assimilations are cycled up
to 60 min.

The rms errors for the wind components are pre-
sented in Fig. 10. The 4DVAR (EnKF) analysis wind
errors are approximately double (triple) those for the
case where the assumption of simultaneous observa-
tions is true (Fig. 3). For the thermodynamic and con-
densate variables, the same conclusion can be drawn by
comparing Figs. 11 and 5. Thus, 4DVAR analyses ap-
pear somewhat less sensitive to this kind of observa-
tional error, at least for the wind components, than the
EnKF. This result can be explained by the combination
of two effects. When the difference between the correct
and assumed time is neglected, the first effect is that
radial velocities have effectively larger errors than the
assumed 1 m s�1 observational error standard devia-
tions. Both algorithms suffer from this effect. The sec-
ond effect is that the uncertainty (the ensemble vari-
ance) is reduced too much in the EnKF, resulting in too
little ensemble spread for the following analysis cycle.
The 4DVAR algorithm does not suffer from this sec-
ond effect because its background-error variance is
fixed in time. For the thermodynamic and condensate

variables, however, the results with 4DVAR and the
EnKF are very similar at 50 and 60 min.

In the second experiment, the observations are as-
similated at the correct time (i.e., at each 10 s or two
time steps). The results are shown in Fig. 12 for the
wind components and in Fig. 13 for the thermodynamic
and condensate variables. For the EnKF, the assimila-
tion of the data at the correct times paradoxically re-
sults in larger errors (cf. Figs. 12 and 10). This problem
is particularly noticeable over the first 5–10 min, where
the EnKF analysis of the wind field is often much worse
than the prior 10-s forecast. The 4DVAR assimilation,
in contrast, does not suffer this effect.

FIG. 10. The forecast and analysis rmse of the three wind com-
ponents of the EnKF (thin lines) and 4DVAR (thick lines) analy-
ses. The radial velocity Vr and the rainwater content qr are as-
similated. The data are collected at each 10 s and assimilated as if
they were valid at each 5 min.

FIG. 11. As in Fig. 10 but for the liquid water potential tem-
perature �l, the rainwater content qr, and the total water con-
tent qt.

FIG. 12. The forecast and analysis rmse of the three wind com-
ponents of the EnKF (thin lines) and 4DVAR (thick lines with
squares) analyses. For these two experiments, the radial velocity
Vr and the rainwater content qr are assimilated. The data are
assimilated at each 10 s. The thick curves without the squares are
for the EnKF experiment where only radial velocities are assimi-
lated.
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With further experiments, we have traced the major
source of the difficulty to the assimilation of qr obser-
vations at early times. Without assimilation of qr, the
EnKF analyses are greatly improved (thick curves with-
out squares in Figs. 12 and 13) and become better in
quality than those produced when complete volumes of
observations are available every 5 min (Fig. 2). Consis-
tent with this result, Zhang et al. (2004) also assimilate
only radial velocity, and also find that frequent assimi-
lation of observations yields results comparable to
those produced by assimilation every 5 min.

Although we have not yet developed a definitive so-
lution to this problem, the qr observations appear to
degrade the analysis at early times as follows: Before
the first observations are assimilated, the ensemble
mean has disorganized vertical motion and too little qr.
The assimilation of radial-velocity observations begins
to impose an updraft, and those members with the
strongest updrafts tend to develop more qr in the next
forecast. The qr observations, which are much larger
than the ensemble-mean qr, then produce further in-
creases in w owing to the positive correlation between
qr and w. This results in much too strong an analyzed
updraft after the first 3 min of assimilation. The funda-
mental problem is that the positive correlation between
w and qr at early times is an artifact of the ensemble
initialization and is not representative of the errors in
the ensemble mean (where errors in w are positive
while those in qr are negative).

6. Summary

This paper has compared a well-established 4DVAR
implementation and a relatively new ensemble Kalman

filter technique in the context of the assimilation of
simulated radar data in a cloud-resolving model. By
prescribing the observational error and neglecting the
error of the forecast model, the interpretation of the
results was easier in this first comparison of the two
methods with a realistic atmospheric model at the con-
vective scale.

Previous work with the EnKF at convective scales
(Snyder and Zhang 2003; Zhang et al. 2004) did not
explore the use of reflectivity observations. Rainwater
content, as a surrogate for reflectivity, has been assimi-
lated in the EnKF in this paper and shown to improve
the analysis. [In an independent study, Tong and Xue
(2005) also consider assimilation of reflectivity obser-
vations with the EnKF.] The improvement is most ap-
parent after several assimilation cycles, at which point
analyses that include rainwater observations have re-
duced rms error and smaller variability among realiza-
tions of the experiment. In the first cycles, however,
rainwater observations in the EnKF can degrade the
analysis if the prior ensemble mean is far from the true
state (e.g., if it lacks the convective cell). The present
study also employs a smooth spatial localization of the
EnKF forecast covariances, which yields further im-
provements in the EnKF analyses relative to previous
work in radar data assimilation. Here the “covariance
relaxation” technique proposed by Zhang et al. (2004)
did not improve the EnKF analyses. However, we
speculate that this technique can be effective in the
context of real data assimilation with the EnKF because
it can compensate for the effect of model error.

In the simulations of supercells considered here, the
model state has nearly 106 degrees of freedom. The
implementations of both schemes are therefore con-
strained by practical computational limits and require
compromises relative to theoretically optimal algo-
rithms. For example, the background in 4DVAR, as
implemented here, is the horizontally uniform, environ-
mental sounding rather than a forecast from the previ-
ous assimilation window, and the EnKF allows each
observation to influence only state variables within a
few kilometers of the observation location. Thus, our
results necessarily reflect the specific implementation
of each scheme as well as more fundamental properties
of the underlying algorithms.

Both of the assimilation schemes generally perform
well for the convective-scale flow considered in this
study. Some differences were evident: 4DVAR has an
advantage over the EnKF given observations over a
limited period of, say, 10 min particularly for the wind
components, while the EnKF typically produces better
analyses than 4DVAR in later assimilation cycles.

The improvement of the EnKF analyses through suc-

FIG. 13. As in Fig. 12 but for the liquid water potential tem-
perature �l, the rainwater content qr, and the total water con-
tent qt.

3092 M O N T H L Y W E A T H E R R E V I E W VOLUME 133



cessive cycles is clearly produced, at least in part, by the
use of a prior forecast and estimates of its error covari-
ance in the assimilation. The 4DVAR scheme em-
ployed here, in contrast, does not utilize forecasts from
previous cycles (except as a first guess in the minimi-
zation), which, we believe, is one of the reasons why the
4DVAR analyses do not improve from one cycle to the
next in most of the experiments except for the one
starting at the mature stage of the storm. This is of
course not a fundamental limitation of 4DVAR but
rather a practical limitation of the scheme used here,
which stems from the difficulty of modeling the back-
ground-error covariances at convective scales. Another
possible reason why the 4DVAR analyses do not im-
prove from one cycle to the next is that the convergence
speed of the minimization in the 4DVAR scheme de-
pends on the complexity of the cost function. For rea-
sons that have been stated in section 3, we chose to
terminate the minimization after 100 iterations for each
4DVAR run.

It is less clear why the EnKF analyses are inferior to
those produced by 4DVAR when observations from
only a limited time interval are used. One source of
difficulty may be our specification of the initial en-
semble for the EnKF. We have found (see also Snyder
and Zhang 2003) that the performance of the EnKF,
especially over the first few assimilation cycles, depends
on the initial ensemble. Thus, there likely is potential
for further improvements in the initial ensemble. Sam-
pling error owing to the finite ensemble is another pos-
sibility, but our experiments shows little benefit from
an increase of the ensemble size from 100 to 200 mem-
bers. It is also difficult to quantify the benefits of the
temporal smoothness constraint used in 4DVAR,
which has no counterpart in the EnKF. At a more fun-
damental level, nonlinearity in the evolution of differ-
ences between members may also contribute to the dif-
ferences in the 4DVAR and EnKF analyses.

Given the fact that the 4DVAR had a superior per-
formance in the first cycle and the EnKF demonstrated
a better error reduction with more cycles, a better
analysis could be produced by combining the two
schemes. One approach could be to use information
from the EnKF in a hybrid scheme, although such a
hybrid would require the development of new precon-
ditioners for the 4DVAR minimization in order to re-
main computationally feasible for large problems. An-
other hybrid approach would be to use 4DVAR only
over the first assimilation window, in order to provide
an initial ensemble mean for the EnKF.

While comparisons of 4DVAR and the EnKF in this
paper have been confined to an isolated convective cell,
future multiscale numerical weather prediction models

will resolve convective, mesoscale, and eventually glob-
al motions of the atmosphere, offering a great challenge
for data assimilation. For 4DVAR, the difficulties lie in
the fact that a 6-h assimilation window is a minimum
required for the analysis of synoptic-scale motions. For
a window of this length, however, multiple minima ap-
pear in the 4DVAR cost function because the evolution
of errors in resolved meso- or smaller-scale features
may be strongly nonlinear by the end of the window
(Tanguay et al. 1995). It is not clear now how well the
incremental approach can perform in this situation. For
the EnKF, on the other hand, a large observation radius
of influence will be required and problems of imbalance
and degenerate ensemble covariances may affect the
performance of the EnKF (Lorenc 2003). The relative
performance of these two algorithms for problems with
multiple scales will depend on how such issues are re-
solved in the future.

The comparison here has also considered only simu-
lated observations and a perfect model. Another step in
the comparison between 4DVAR and the EnKF will be
in the context of the assimilation of real observations.
This raises the issues of error in the forecast model and
uncertainty in the specification of observational errors.
Accounting properly for either of these are important
research issues for both 4DVAR and the EnKF.
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