
Q. J. R. Meteorol. Soc. (2005), 131, pp. 3313–3322 doi: 10.1256/qj.05.110

An ensemble Kalman filter for short-term forecasting
of tropospheric ozone concentrations
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SUMMARY

An air-quality forecasting system based on the pair ‘NWP model MM5–chemistry transport model CAMx’
is proposed. A version of the ensemble Kalman Filter has been developed. The model-error covariance matrix is
parametrized with the help of a covariance function and represented by an ensemble formed as a random selection
from leading eigenvectors. The performance of the system is tested on the case of an ozone episode in June 2001.
As a source of observations, the AirBase database has been used. Starting the forecast from analysed concentration
fields improves the quality of forecast of the next day’s ozone concentration maxima.
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1. INTRODUCTION

In the Czech Hydrometeorological Institute (CHMI), a statistical model for fore-
casting daily maxima of ozone concentration has been in use since 2000. This system,
developed jointly by the Institute of Comptuter Science (ICS) and CHMI, is based on
data from the Czech air-quality monitoring system. Later on, a deterministic system was
implemented in the ICS which is run in a quasi-operational regime (http://www.medard-
online.cz). Due to uncertainties in the inputs for deterministic systems, it would be
desirable to enhance the forecasting system with a data assimilating module. Such a
module would provide a dynamic analysis of the ozone concentration field and improve
forecasting skill.

Data assimilation in chemistry transport models (CTMs) has been recently studied
in several papers. Some of them consider variational form using the adjoint model (e.g.
Elbern et al. 2000; Wang et al. 2001) while others deal with sequential assimilation
using various forms of ensemble Kalman filters (EnKF, e.g. van Loon and Heemink
1997; Segers et al. 2000). A comprehensive paper on Kalman filtering in air quality,
covering many aspects of data assimilation, is Hanea et al. (2004).

The paper presents the results of a pilot study for a short-term ozone forecasting
system. In order to be able to assess the influence of data assimilation, we have
performed an experiment for a domain covering central and western Europe, for a period
well covered with available measurements in the AirBase database. (AirBase is the
public air-quality database system of the European Environmental Agency; http://air-
climate.eionet.eu.int/)

2. THE FORECASTING MODEL PAIR

The numerical weather prediction (NWP) part of the system is formed by the MM5
model (Pennsylvania State University/NCAR, version 3.7.2, see www.mmm.ucar.edu/
mm5). It has been configured for two domains; the coarse domain covers central and
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western Europe with 27 km resolution, and the nested domain covers the Czech Republic
with 9 km resolution. There are 26 vertical levels which have arisen from the default
23 levels by subdividing some lower layers in order to get a better description of the
planetary boundary layer. The NOAH land-surface model is used (Chen and Dudhia
2001). The CTM part of the system consists of the model CAMx (Comprehensive Air-
quality Model with extensions, ENVIRON USA, version 4.20, http://www.camx.com)
with two domains derived from the above-mentioned MM5 domains. CAMx is used
with the SAPRC99 (Carter 2000) mechanism. The emission model is based on the
EMEP∗ inventory (http://www.emep.int, with resolution about 50 km). For the countries
which have taken part in the Panonia Ozone Project (POP), the emissions have been
repositioned using the geographic distribution of the older POP inventory while keeping
the new totals.

3. DESIGN OF THE EXPERIMENT

(a) Configuration of the model and time periods of the experiment
We have performed several experiments with different configurations of the CAMx

model. It turns out that the choice of vertical diffusion scheme has a strong impact on the
performance of CAMx. We have tested several schemes and have chosen the newest one
(Byun et al. 1999) which gives the best accordance with measurements. The simulations
took place for two time periods. The first period was used for station selection and tuning
of parameters of the filters. The second period, when also an ozone episode took place,
was used for evaluation of the filter performance.

(b) Bias considerations and selection of measurement stations
Unless we use some kind of a bias-aware filter (Dee and da Silva 1998), a basic re-

quirement for Kalman filtration is that the model has to be unbiased. In reality, however,
both the model and the observations are biased. The ‘true’ value actually corresponds to
some unobservable average quantity. The difference between the observed value and its
model counterpart should be split into a systematic part (bias) and random error in both
model and observations. Such a task is obviously hard to accomplish. The best quantity
we have at our disposition is the mean innovation, i.e. the mean difference between the
modelled and observed value. If the mean innovation is far from zero, it could be due
to the model bias as well as due to lack of representativeness of the station with respect
to the corresponding grid square. The most common sort of bias in ozone modelling is
the orographic bias. In Hanea et al. (2004), any station with altitude over 500 m was
rejected from data assimilation. Since our resolution is finer and our region of interest
has higher altitude, we accepted stations at altitudes under 900 m.

Another sort of model bias can arise from inadequate boundary conditions, espe-
cially if clean boundary conditions are employed. To reduce this effect, we have per-
formed a simulation for the same time period on a large grid with the same centre as our
grid but with 50 cells added on each side. From this simulation, boundary conditions
have been extracted and provided for our experiments.

From a technical viewpoint, each background station which has the mean innova-
tion close to zero is eligible for data assimilation. The process of station selection was
done as follows:

∗ Co-operative Programme for Monitoring and Prediction of Air Pollutants in Europe.
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(i) We confined ourselves to background stations, as is usual in air-quality mod-
elling studies.

(ii) For the first simulation period, a free run of CAMx was performed. Stations
with an absolute value of mean innovation greater than a threshold were blacklisted.
This threshold was 20 μg m−3 for O3 and 15 μg m−3 for NO and NO2.

(iii) Cluster analysis of station locations based on grid coordinates was performed
in order to get an even spread of selected stations. Each cluster seed was selected for
assimilation. This ensured one station per grid point.

Due to daily cyclical behaviour of ozone concentrations, further reduction of bias
would probably require its parametrization which is beyond the scope of this paper.
From now on we shall assume the model to be unbiased.

4. THE PROPOSED DATA ASSIMILATION SYSTEM

We perform data assimilation for the coarse domain of the CTM. Uncertainty in
meteorological fields, emissions and other inputs and parameters is covered by the
model error.

(a) Choice of the state vector
There are 56 species entering the CAMx model with different importance for

photochemical reactions. The only measurements routinely available are those of ozone
and nitrogen oxides, since others are rarely measured at background stations. Two
extreme choices of state vector are

(i) all values of concentrations of the modelled species in the CAMx model, i.e.
concentrations of 56 species on the 3D grid. This represents over three million values.

(ii) values of species which have some measurements available, i.e. in our case
O3, NO, NO2, on the 2D grid of the ground layer.

A reasonable compromise should take into the state vector those species which have
a strong or moderate relationship with measured species. If such species are neglected,
the analysis update does not take place for them and the model tends to restore the
original values. On the other hand, if unrelated variables are included in the state vector,
spurious correlations may arise and the computational load increases. We performed an
experiment with all 56 species on a 2D grid of the ground layer included in the state
vector and monitored the ensemble spread of single species. Then we dropped those
species which gave insignificant spread. As a result we formed our state vector of 25
variables∗ in the 2D grid of the ground layer. Sample plots of two analyses with different
choices of state vector are in Figs. 1(a) and (b).

(b) Parametrization of the model error and its representation by an ensemble
Let us recall the forecast step of the extended Kalman filter equations (for the

notation and a discussion of model error in NWP models see e.g. Hamill and Whitaker
(2005)):

xf
k = M(xa

k−1) (1)

Pf
k = MPa

k−1MT + Qk, (2)

∗ O3, NO, NO2, CRES, PAN2, HCHO, CCHO, RCHO, ISOPRENE, HNO3, HO2H, CO2H, CCO-OOH, ACET,
MEK, COOH, ROOH, CO, ETHENE, ALK1, ALK3, ALK4, ALK5, SO2, SULF. For the notation see Carter
(2000), Table A-1.
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where M is the (nonlinear) model operator, M its tangent linear operator and Qk

stands for the model-error term. A typical behaviour of ensembles in NWP models is
characterized by growing of the ensemble spread during the integration of the model
(Ehrendorfer 1997). This is, however, not the case in ensembles of CTM states. The
substantial portion of forcing in the model causes a relatively quick convergence to
a common mean for any ensemble of perturbed model states. We have performed
experiments in which we switched off the model error term in the middle of the
simulation and put Qk = 0. During the subsequent 24 hours of simulation, the ensemble
spread (measured by the r.m.s. error from the ensemble mean) declined approximately
to 20% of its original value for O3 and to 10% for NO2. For this reason it is essential to
model properly the error matrix Q.

In addition to the input errors mentioned above, model error encompasses the error
of insufficient or missing physics, errors arising in model orography, physiographic data,
etc. Some uncertainties, especially those related to emissions, are hard to quantify. A
detailed study of sensitivity of a CTM with respect to emissions is Mallet and Sportisse
(2005).

The complexity and lack of information on model errors has led us to somewhat
arbitrary parametrization of the matrix Q, related to optimum interpolation. In optimum
interpolation, the overall error is constant in time and it is determined geographically.
The corresponding covariance matrix is generated with the help of a spatial covariance
function, isotropic or anisotropic. Different choices for such a function are described
in Gaspari and Cohn (1999). Let x and y be some grid points in the horizontal, and
d(x, y) be their Euclidean distance. We start with the isotropic homogeneous correlation
function

B0(x, y) = {1 + d(x, y)} e−d(x,y). (3)
This function has also been used in Hoelzemann (2000), who reports a relatively suc-
cessful performance of the optimum interpolation data assimilation scheme of chemical
constituents in CTM EURAD (EURopean Air Pollution Dispersion, www.eurad.uni-
koeln.de/). Various generalizations are proposed there. We use this function (called
Balgovind function in Hoelzemann 2000) as a template for the covariance function
generating the model-error covariance matrix Q. First we construct an anisotropic
generalization of the function (3).

We put
B(x, y) = e(x, y){1 + r(x, y)} e−r(x,y), (4)

where

r(x, y) = d(x, y)

dr{1 + rww(x, y)} ,
e(x, y) = eb{1 − elu|clu(x) − clu(y)|},

w(x, y) is a projection of the wind vector onto the direction connecting x and y and
clu(x) is a scoring function. The scoring function describes the type of grid point
according to the type of diurnal cycle of ozone concentrations (roughly urban versus
rural) determined by land use; eb, elu, rw are suitable constants. The idea of land-use-
based generalization also occurs in Hoelzemann (2000).

We suppose that the model errors in different species are uncorrelated so that the
matrix Q has a form of

Q =
⎛
⎜⎝

σ 2
1 Q1 . . . 0
...

. . .
...

0 . . . σ 2
mQm

⎞
⎟⎠ ,
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where σ 2
i is the error variance of a single species, which has to be specified and Qi is

some template matrix derived from the function (4) with parameters specific for i.
While it is clear that the values of some species may show strong correlations, it is

hard to infer whether these correlations may be present in model errors. Moreover, the
correlations of values depend on weather conditions; sometimes they show daily cycles,
etc. The behaviour of model error relations is unclear in this case, therefore the only
viable choice so far is to adopt the assumption of zero correlations.

Similarly, for the species not measured we assume a perfect model, i.e. zero
variance of model error. Although there is no methodological reason for doing so, adding
random noise to these variables without correcting them with a subsequent analysis
might lead to an uncontrolled increase of variance.

The ensemble representing the time- and flow-dependent model error is generated
in the following way:

(i) We generate the template matrix with the covariance function (4), the dimension
corresponding to a single species and ground layer only. Then, a sparse approximation
of this covariance matrix is taken by zeroing covariances under a given threshold. The
threshold has to be selected carefully, since an overestimated threshold can cause loss
of positive definiteness of the matrix.

(ii) Using the ARPACK software for sparse matrices, we generate an ensemble of
the first 500 principal eigenvectors of the approximated matrix. The vectors have the
form of V�1/2, where Qi = V�VT.

(iii) We select those species for which measurements are available or which can be
correlated reasonably to the measurements. In our case we select O3, NO, NO2 only.

(iv) Let N be the ensemble size. For each of the selected species, a uniform random
sample of N members is taken from the 500 eigenvectors. These N members are
scaled by a scalar as a compensation for loss of spread due to selecting only N from
500 eigenvectors. In the case study below, N was equal to 60. They define perturbations
which represent the covariance matrix of model errors for the given species.

(v) The eigenvectors are multiplied by σ 2
i , concatenated and padded with zeros

so that the resulting vector has the dimension of the whole state vector. The set of all
these vectors represents the matrix Q, where all variances σ 2

i are zero except those
corresponding to the selected species.

(c) The analysis step in the ground layer

Let Ab = (xb
1, xb

2, . . . , xb
N) be the background ensemble propagated from the previ-

ous model step, and Aq = (xq
1, xq

2, . . . , xq
N) be the ensemble representing model error as

constructed above. If A′
b and A′

q are the centred counterparts of Ab and Aq respectively,

and A′f = A′f
b + A′f

q , we can estimate Pf
k as

Pf
k ≈ A′fA′fT

N − 1
.

The data assimilating part of the system is a version of an ensemble square-root
filter, in the setting without perturbed observations and with covariance localization
(Hamill et al. 2001; Whitaker and Hamill 2002). Let H be the observation operator, let
R be the observation covariance matrix and ρ a localization function. The mean update
equation is

x̄a = x̄f + K(y − Hx̄f),
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where

K = ρ ◦ (PfHT)C−1,

C = ρ ◦ (HPfHT) + R,

and the symbol ◦ denotes the matrix Schur product. The localization function ρ is chosen
according to formula (4.10) of Gaspari and Cohn (1999), as a piecewise rational function
of fifth order with compact support.

The perturbations update equation takes the form

A′a = (I − K̃H)A′f,

where
K̃ = ρ ◦ (PfHT)(C− 1

2 )T(C
1
2 + R

1
2 )−1.

A sample plot of localized correlations of species is in Figs. 2(a) and (b). They have
arisen as a combined result of the anisotropic covariance function in the parametrization
of the matrix Q and the development of the ensemble in time.

(d) The propagation of analysis increments in the vertical
Since we assimilate observations in the ground layer only, we perform the 2D

analysis for the ground layer. We want higher-layer concentrations to be consistent
with the increments in the ground layer. If no action is taken, the increment would be
quickly vertically diffused away. To prevent this, we impose artificial vertical diffusion
with fixed boundary conditions. This diffusion will propagate our ground-level analysis
increment in the vertical direction and reduce the shock invoked in the model. We
employ the CAMx vertical diffusion equation

∂c

∂t
= ∂

∂z

(
Kv�

∂(c/�)

∂z

)
, (5)

where c here stands for the increment of concentration, z is the vertical dimension,
Kv denotes the vertical diffusion coefficient and � is air density. We can consider the
increment separately since the equation is linear. We fix the bottom concentration equal
to the analysis increment in the ground layer and the top concentration equal to zero.
Artificial diffusion is performed for a specified time period (1 hour in our case).

5. A CASE-STUDY

Our ultimate target is a practically viable forecasting system for tropospheric
ozone concentrations. Such a system would perform ensemble filtering hourly, in the
manner suggested above. A forecast for the next day would be computed each day
in the afternoon, starting from the last available analysis. The case-study reflects this
conception.

We generated an ensemble of 60 members. The time period used for selection of
stations and tuning of parameters of the filter was 1–20 June 2001; the period used for
evaluation, when also an ozone episode occurred, was 22–29 June 2001.

Data from stations selected from the AirBase database according to section 3(b)
have been assimilated. This gave about 450 measurements of O3, 300 measurements of
NO2 and 200 measurements of NO each hour. Starting from the EnKF analysis at 1700∗

∗ Central European Time (CET = UTC + 1 hour) is used throughout.
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(a) (b)

(c) (d)

Figure 1. Maps of ozone concentration (μg m−3) at 1500 on 28 June 2001 peaking episode. (a) EnKF analysis,
25 species in the state vector; (b) EnKF analysis, 3 species in the state vector; (c) free model run; and (d) forecast

starting from the analysis at 1700 on 27 June.

(a) (b)

Figure 2. Maps of localized sample correlations of a species located in one grid point (Prague) with the rest of
the grid: (a) O3 − O3 at 0800 on 26 June 2001, and (b) NO2 − CO at 2300 on 27 June 2001.
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Figure 3. Line plots of medians of O3 (μg m−3) for 1200–2000 each day: (a) all data, and (b) with data limited to
cases where observed O3 > 130 μg m−3 (i.e. the evaluation is practically focused onto the geographic area of the

episode).
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Figure 4. Absolute error of O3 concentrations (data limited to cases where observed O3 > 130 μg m−3),
presented as median and 75%, 25% and 1% quantiles of absolute errors. The wide box plots show (a) analysis and

(b) forecast, and the narrow box plots show the free run in both cases.

each day of 21–28 June, the one-day-ahead forecast has been computed and distributions
of absolute differences from observations were evaluated. Our main target is to improve
the forecast of daily course of ozone concentration, especially the maxima. Therefore
the evaluation was done for hours 1200–2000. For the evaluation we have used all
background stations with altitude less than 900 m; this gave about 7000 observations
each day.

The EnKF analysis itself was also evaluated. To this purpose we have excluded
stations which took part in data assimilation (thus the evaluation of analysis is based on
a lower number of observations).

For 1500 on 28 June 2001, when ozone concentrations were peaking over middle
and south-east Europe, the concentrations resulting from the free run and forecast are
shown in Figs. 1(c) and (d). The maps suggest that there is a significant contribution of
the analysis in the regions of elevated ozone concentrations but minor difference from
the free run elsewhere. The forecast is situated (as expected) somewhere between the
analysis and free run, showing that the impact of the analysis lasts till the next day.

These findings are in accordance with the results obtained for the whole evaluation
period. Figures 3(a) and (b) show the performance of the CAMx free run, analysis and
forecast for the evaluation period in terms of absolute errors. Lines represent medians
of ozone concentration over hours 1200–2000. Figures 4(a) and (b) show box plots of
absolute errors for the free run, analysis and forecast for regions with elevated ozone
concentrations.

The medians of absolute errors are summarized in Table 1.
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TABLE 1. MEDIANS OF ABSOLUTE ERRORS WITH RESPECT TO OBSERVATIONS

All values O3 > 130 μg m−3

Day Free run Analysis Forecast Free run Analysis Forecast

22 20.1 18.4 19.0 41.1 30.6 39.0
23 17.6 15.6 17.0 31.6 24.5 28.7
24 15.9 15.1 15.1 24.0 17.2 20.9
25 21.9 17.3 19.8 30.0 20.6 26.1
26 31.2 22.0 27.2 42.0 21.3 35.2
27 24.0 21.8 23.2 37.4 20.5 30.1
28 16.4 16.8 16.5 27.6 8.8 16.0
29 16.1 14.6 16.4 28.1 20.2 26.6

From the Figures and the Table, it can be seen that the analysis shifts all the error
distribution towards zero. A significant improvement is obtained if we confine ourselves
to values of elevated concentrations, where also improvement of the forecast is evident.
The forecast improvement suggest that the analysis positively influences modelling of
the night reservoir of ozone and nitrogen oxides and their spatial distribution.

Figures 1(a) and (b) show two versions of the analysis, one with the state vector
formed from O3, NO and NO2, the other one with the state vector formed of the
25 species as described in section 4(a). The two versions of the analysis show local
differences. We have run forecasts starting from both versions with very similar results.

6. CONCLUSIONS AND OUTLOOK

The results of the pilot experiment show the benefit of ensemble Kalman filtering
for both analysis and forecast of tropospheric ozone concentration fields. The perfor-
mance improvement is evident in regions with elevated ozone concentrations, whereas
overall statistics show a less pronounced result. Further performance improvements
could be expected if a reasonable parametrization of the station and model bias were
to be employed. This would enable a more efficient assimilation of urban background
stations and would develop a better base for forecasting urban air quality. Model output
statistics could be used for this purpose. Optimal tuning of ensemble size, variances in
the model and observation-error matrices and other building elements of the system are
the matter of future work.

ACKNOWLEDGEMENTS

This work was supported by the Grant Agency of the Academy of Sciences of the
Czech Republic (grant No. 1ET400300414, framework ‘Information Society’) and by
the Grant Agency of the Czech Republic (grant No. 205/02/1488).

REFERENCES

Byun, D. W. and Ching, J. K. S.
(Eds.)

1999 ‘Science algorithms of the EPA Models-3 Community Mul-
tiscale Air Quality (CMAQ) Modeling System.’ EPA-
600/R-99/030, Office of Research and Development, US
Environmental Protection Agency, Washington DC, USA

Carter, W. P. L. 2000 ‘Documentation of the SAPRC-99 Chemical Mechanism for
VOC Reactivity Assessment.’ Final Report to California
Air Resources Board Contract No. 92-329 and 95-308.
http://pah.cert.ucr.edu/∼carter/absts.htm

Chen, F. and Dudhia, J. 2001 Coupling an advanced land-surface/hydrology model with the
Penn State–NCAR MM5 modeling system. Part I: Model
implementation and sensitivity. Mon. Weather Rev., 129,
569–585



3322 K. EBEN et al.

Dee, D. P. and da Silva, A. M. 1998 Data assimilation in the presence of forecast bias. Q. J. R.
Meteorol. Soc., 124, 269–295

Ehrendorfer, M. 1997 Predicting the uncertainty of numerical weather forecasts: a
review. Meteorol. Zeitschrift, 6, 147–183

Elbern, H., Schmidt, H.,
Talagrand, O. and Ebel, A.

2000 4D-variational data assimilation with an adjoint air quality
model for emission analysis. Environ. Modell. Software, 15,
539–548

Gaspari, G. and Cohn, S.E. 1999 Construction of correlation functions in two and three dimensions.
Q. J. R. Meteorol. Soc., 125, 723–757

Hamill, T. M. and Whitaker, J. S. 2005 Accounting for the error due to unresolved scales in ensemble data
assimilation: a comparison of different approaches. Mon.
Weather Rev., 133, 3132–3147

Hamill, T. M., Whitaker, J. S. and
Snyder, C.

2001 Distance-dependent filtering of background error covariance
estimates in an Ensemble Kalman Filter. Mon. Weather
Rev., 129, 2776–2790

Hanea, R. G., Velders, G. J. M. and
Heemink, A.

2004 Data assimilation of ground-level ozone in Europe with a Kalman
filter and chemistry transport model. J. Geophys. Res., 109,
D10302, doi: 10.1029/2003JD004283

Hoelzemann, J. 2000 ‘Inhomogeneous and anisotropic assimilation of ozone obser-
vations for chemical transport modelling’. Dipl. thesis,
EURAD-group, Institute for Geophysics and Meteorology,
University of Cologne, Germany

Mallet, V. and Sportisse, B. 2005 A comprehensive study of ozone sensitivity with respect to emis-
sions over Europe with a chemistry-transport model. J. Geo-
phys. Res., 110, D22302, doi: 10.1029/2005JD006234

Segers, A., Heemink, A.,
Verlaan, M. and van Loon, M.

2000 A modified RRSQRT-filter for assimilating data in atmospheric
chemistry models. Environ. Mod. Software, 15, 663–671

van Loon, M. and Heemink, A. W. 1997 ‘Kalman filtering for nonlinear atmospheric chemistry models:
First experiment’. Report MAS/R9711, Cent. voor Wisknude
en Inf., Amsterdam, the Netherlands

Wang, K. Y., Lary, D. J.,
Shallcross, D. E., Hall, S. M.
and Pyle, J. A.

2001 A review on the use of the adjoint method in four-dimensional
atmospheric-chemistry data assimilation. Q. J. R. Meteorol.
Soc., 127, 2181–2204

Whitaker, J. S. and Hamill, T. M. 2002 Ensemble data assimilation without perturbed observations. Mon.
Weather Rev., 130, 1913–1924


