
Environ Ecol Stat (2008) 15:101–110
DOI 10.1007/s10651-007-0033-0

A two-stage ensemble Kalman filter for smooth data
assimilation

Craig J. Johns · Jan Mandel

Received: 1 March 2005 / Revised: 1 September 2005 / Published online: 14 September 2007
© Springer Science+Business Media, LLC 2007

Abstract The ensemble Kalman Filter (EnKF) applied to a simple fire propagation model
by a nonlinear convection-diffusion-reaction partial differential equation breaks down be-
cause the EnKF creates nonphysical ensemble members with large gradients. A modification
of the EnKF is proposed by adding a regularization term that penalizes large gradients. The
method is implemented by applying the EnKF formulas twice, with the regularization term
as another observation. The regularization step is also interpreted as a shrinkage of the prior
distribution. Numerical results are given to illustrate success of the new method.

Keywords Data assimilation · Ensemble Kalman filter · State-space model · Penalty ·
Tikhonov regularization · Wildfire · Convection-reaction-diffusion · Shrinkage · Bayesian

1 Introduction

The discrete time state-space model in its most general form is an application of the Bayesian
update problem: the modeled system is advanced in time until an analysis time, when the
distribution of the system state before the update, called the prior or the forecast distribution,
and the data likelihood are combined to give the new system state distribution, called the
posterior or theanalysis distribution. The system is then advanced until the next analysis
time. Kalman (1960) and Kalman and Bucy (1961) provided simple recursive formulas for
the system mean and covariance under the assumptions that the probability distributions are
normal and the system is linear. The Kalman filter is popular in areas as diverse as medicine
(Jones 1984), economics (Shumway and Stoffer 1982) and geosciences (Evensen 2003).
Variants were devised for, e.g., nonlinear problems (Jazwinski 1970), missing observations
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(Shumway and Stoffer 1982), censored observations (Johns and Shumway 2005), irregular
observation times (Jones 1984), nonlinear updates (Harvey 1989), and non-Gaussian distri-
butions (Carlin et al. 1992; Kitagawa 1987; Meinhold and Singpurwalla 1989).

Traditional Kalman filters implicitly manipulate the covariance matrix of the state, and
they are thus unsuitable for systems with a large number of degrees of freedom, such as
in computational models in geophysics. Ensemble Kalman Filters (EnKFs) were developed
(Evensen 1994; Houtekamer and Mitchell 1998) that represent the distribution of the sys-
tem state using a random sample, called an ensemble, and do not use the covariance matrix
explicitly. The benefit of the EnKF comes in situations where the eigenvalues of the covari-
ance matrix rapidly decay. In that case, even a few ensemble members can reproduce the
large-scale behavior of the covariance behavior of the system. This situation is typical of
models of governed by partial differential equations, such as in geophysical systems. For
related filters relaxing or removing the Gaussian assumption, see Anderson and Anderson
(1999), Bengtsson (2003), Doucet et al. (2001), van Leeuwen (2003). For comprehensive
surveys, see Evensen (2003, 2004), Tippett (2003).

This work is part of an effort to build a Dynamic Data Driven Application System (DDDSS)
for wildfires. The method proposed in this paper was motivated by the observation that
straightforward application of EnKF to a simple wildfire model (Mandel et al. 2004a) always
fails within a few analysis cycles. Due to statistical variability of the ensemble members,
locations with large temperature gradients develop, resulting in bigger fires and some ensem-
ble members move away from the truth. The EnKF update formulas, trying hopelessly to
match the observations within the span of the ensemble, result in states that are nonphysical
(too large, too small, or too rough) in some places, which causes a complete breakdown of
the simulations in subsequent advancements.

We use a Bayesian approach similar to Tikhonov regularization (Hansen 1998) to force the
analysis solution to be more spatially smooth. Tikhonov regularization techniques were used
in Kalman filters in a different way than described here, to stabilize ill-conditioned parameter
identification (Johansen 1997; Kim et al. 2002). The beauty and utility of the method comes
from the implementation; regularization requires simply using the EnKF update formulas
twice, thus avoiding the need for a new code.

The paper is organized as follows. In Sect. 2, we set the stage by briefly reviewing the Kal-
man filter. The Ensemble Kalman filter and its implementation using contemporary numerical
software are considered in Sect. 3. In Sect. 4, we add regularization as an independent obser-
vation, leading to a two stage EnKF. Finally, results for a simple fire model problem are
presented in Sect. 5.

2 The Kalman filter

We consider the state space model, in which the modeled quantity is the probability distribu-
tion of the state vector x. The probability distribution is evolved in time by running the model
until the end of an analysis cycle, when it is updated to account for new data. At the end of
the cycle, the probability density p(x) of the system state x before the update (the prior) and
the probability density p(y|x) of the the data y given an assumed value of the system state
x (the data likelihood) are combined to give the new probability density of the system state
p (x|y) (the posterior) by the Bayes theorem,

p (x|y) ∝ p (y|x) p(x), (1)
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where ∝ means proportionality. Equation 1 determines the posterior density p(x|y) com-
pletely because

∫
p (x|y) dω (x) = 1. Consider the case of linear observation operator H :

given system state x, the data value, y, would be Hx if the model and the data were perfect
with no errors. Of course, in general, the given data y �=Hx, so discrepancies are modeled
with the likelihood p (y|x). Assume that the prior has normal distribution with mean µ and
covariance Q, and the data likelihood is normal with mean Hx and covariance R,

p(x) ∝ exp

(

−1

2
(x − µ)T Q−1(x − µ)

)

,

p (y|x) ∝ exp

(

−1

2
(y − Hx)T R−1(y − Hx)

)

.

Denote the posterior system state by x̂ instead of x|y. It can be shown by algebraic manip-
ulations (Anderson and Moore 1979) that the posterior is also normal,

p
(
x̂
) ∝ exp

(

−1

2
(x̂ − µ̂)T P−1(x̂ − µ̂)

)

,

where the posterior mean µ̂ and covariance P are given by the update formulas

µ̂ = µ + K (y − Hµ) , P = (I − K H) Q, (2)

K = Q HT (
H Q HT + R

)−1
. (3)

The matrix K is called the Kalman gain matrix. The observation (Meinhold and Singpur-
walla 1983; Paige and Saunders 1977) in the following Lemma interprets the Kalman filter as
least squares: the posterior mean µ̂ is obtained by trying to match the observation, H µ̂ ≈ y,
as well as to preserve the mean, µ̂ ≈ µ.

Lemma 1 If µ̂ is defined by (2) and (3), then µ̂ is the solution x of the least-squares problem

S (x) = (x − µ)T Q−1(x − µ) + (y − Hx)T R−1(y − Hx) → min
x

. (4)

Proof At the minimum,

∇S(x) = 2Q−1(x − µ) − 2HT R−1(y − Hx) = 0,

which gives x = P̃(Q−1µ + HT R−1y), where

P̃ = (Q−1 + HT R−1 H)−1 = [
Q − Q HT(H Q HT + R)−1 H Q

] = (I − K H)Q = P.

Consequently, x =P(Q−1µ + HT R−1y) = µ + K (y − Hµ). ��
The next Lemma is an elementary consequence of the Bayes theorem (1).

Lemma 2 Let y and z be observations such that, conditional on x, the error distributions
are independent. Then assimilating the observations y, z jointly gives the same result as
first assimilating the observation y to obtain the posterior ∝ p (y|x) p(x), then taking this
posterior to be the new prior and assimilating z.

Proof From the Bayes theorem,

p (x|y, z) ∝ p (y, z|x) p(x) = p (z|x) p (y|x) p(x) = p (z|x)
[

p (y|x) p(x)
]
, (5)

since y and z are conditionally independent random variables. ��
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3 Ensemble Kalman filter

The EnKF is a Monte Carlo implementation of the Kalman filter, which avoids evolving the
covariance matrix of the distribution of the state vector x. Instead, the distribution is repre-
sented by a sample, called an ensemble. Ensemble members are evolved in time until the end
of the analysis cycle, when the ensemble is updated from the Bayes theorem.

Let X be a p by n matrix whose columns are ensemble members before the Bayesian
update, that is, a random sample from the prior distribution for the state vector x. The prior
distribution is assumed to be normal with covariance Q. Further, replicate the observations
y into matrix Y with d rows and n columns so that each column yk consists of the observed
vector y plus a random vector from N (0, R). Then it follows from (2) and (3) that the col-
umns of

X̂ = X + K (Y − HX)

form a random sample from the posterior distribution.
The ensemble filter involves two approximations. First, in the Kalman gain matrix K =

Q HT
(
H Q HT + R

)−1
, the state covariance Q is unknown, so it is replaced by the sample

covariance computed from the ensemble members,

Q̂ = EET

n − 1
, E = X − X

eneT
d

n
,

where ek is column vector of all ones of size k. This gives the matrix form of the analysis
ensemble

X̂≈X̂ens = X + Q̂ HT
(

H Q̂ HT + R
)−1

(Y − HX). (6)

See Burgers et al. (1998) for more details.
The second approximation results from the fact that if the state evolution is nonlinear,

then the prior distribution is not necessarily normal. Nevertheless, in practice, it is usually
hoped that the distribution from which analysis ensemble members in X̂ens are drawn from
is a good approximation of the posterior and the ensemble filter formulas are used anyway.
In general, the approximations are practical in the setting where a model is approximately
linear in each model advancement step.

Remark 3 For EnKF, observations with independent error distributions can be again assim-
ilated sequentially according to Lemma 2, because the analysis ensemble is a sample from a
distribution that approximates the posterior in the limit for a large ensemble. However, the
approximation is different when the observations are assimilated sequentially and when they
are assimilated jointly because of the sample covariance approximation. In particular, the
resulting analysis ensembles are in general different. For the example presented, we found
that differences were quantitative rather than qualitative.

We now consider an efficient implementation of the EnKF. We write (6) as

X̂ens = X + E(HE)T

n − 1

(
(HE)(HE)T

n − 1
+ R

)

︸ ︷︷ ︸
B

−1

(Y − HX),

where the matrix

HE = HX − HX
eneT

d

n
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can be computed using the already known product HX, and note that efficient Choleski
decomposition of the symmetric matrix B is possible because R is positive definite. The
dominant operations are full matrix-matrix operations efficiently implemented in the Level 3
BLAS (Dongarra et al. 1990) and LAPACK (Anderson et al. 1999) routines, and also readily
parallelizable by SCALAPACK (Blackford et al. 1997). In many cases, the computational
cost can be further reduced as H is usually sparse and/or highly structured, since a component
of y represents a characteristic of the state vector at a single point or the integrated value over
some small region. In addition, if the observation errors are independent, the computation
may be split into assimilating a part of the observations at a time as noted above.

4 Two-stage Kalman filter

In order to stabilize the EnKF, we now combine EnKF with a technique related to Tikhonov
regularization. Tikhonov regularization for the algebraic least squares problem‖Ax − b‖2 →
min consists of solving instead

‖Ax − b‖ + λ2 ‖Lx‖2 → min
x

. (7)

The added term λ2 ‖Lx‖2 incorporates a priori assumptions about the size and smoothness
of the desired solution x , in the form of the quadratic ‖Lx‖2 [21, p. 100]. The parameter λ

should be chosen so that both ‖Ax − b‖2 and ‖Lx‖2 are close to their minimal values as
functions of λ; see [21, p. 84] for details. In practice, λ is often determined by trial and error
and can be considered a smoothing parameter.

From (6) and Lemma 1, it follows that each column x̂k of the posterior ensemble X̂ens is
the solution of the least squares problem

(x̂k − xk)
T Q̂−1(x̂k − xk) + (yk − H x̂k)

T R−1(yk − H x̂k) → min
x̂k

. (8)

Note that in deriving (8), Lemma 1 is applied purely algebraically, with xk , x̂k , and yk playing
the roles of µ, µ̂, and y, respectively.

We want to add to EnKF the assumption that Lx does not vary much from Lµ, which,
analogously to (7), leads to a modification of (8), where the columns of the posterior ensemble
are found as the solutions x̂k of

(x̂k − xk)
T Q−1(x̂k − xk) + (yk − H x̂k)

T R−1(yk − H x̂k)

+ (
rk − L x̂k

)T
D−1 (

rk − L x̂k
) → min

x̂k

. (9)

Here, D is a given symmetric positive definite covariance matrix, D−1 plays the generalized
role of the parameter λ, and rk is sampled from N (Lµ, D). According to Lemma 1, (9) is
equivalent to assimilating two independent observations, y = Hx with the error covariance
R, and Lx = Lµ with error covariance D. From Lemma 2 and Remark 3, the Bayesian
update corresponding to (9) can be implemented as a two stage EnKF simply by applying
the EnKF formulas (6) twice for the two observations Hx = y and Lx = Lµ.

Remark 4 Assimilating the observation Lx = Lµ first, it is easy to see that the proposed
two-stage Kalman filter is equivalent to a hierarchical Bayesian update using the observation
Lx = Lµ to modify the prior. This first update step has the effect of “shrinkage,” reducing
the spread of Lx around Lµ. The observation y = Hx is then applied to the modified prior
in the usual manner.
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5 The fire model

A simple example useful for demonstrating the utility of the regularized algorithm proposed
above is the simplified model of wildfire by a reaction-convection-diffusion equation (Mandel
et al. 2004b),

∂T

∂t
= −∇ · (k∇T ) − c1 · ∇T − c2(T − Ta) + c3

∂S

∂t
∂S

∂t
= −c4 max {0, T − Ti }α S

on the spatial domain [0, 1], with Dirichlet boundary conditions T (0) = T (1) = Ta . The
first equation is the heat balance, where T is the temperature, −∇ · (k∇T ) is the diffusion
of heat, −c1 · ∇T is the heat transport by wind, −c2(T − Ta) is the heat escaping to the
environment with the ambient temperature Ta , and c3

∂S
∂t is the heat generated by burning.

The second equation models the fuel supply; its right-hand side is the intensity of burning.
This is a very simplified model and we do not use any physical data, yet it appears to capture
some essential qualitative fire behavior. All coefficients c1, c2, c2, c4, α are positive. The
variables and constants are dimensionless. The model is discretized by standard finite differ-
ences on the mesh [x0 = 0, x1, . . . , xN = 1] with uniform spacing h = xk+1 − xk = 1/N
and mesh size N = 100. The MATLAB code is available from http://www-math.cuden-
ver.edu/∼ cjohns/fire1d.

In this paper, we consider the differential equation in one spatial dimension. The model
has ignition point Ti = 300 . The initial values of S is 1 on the spatial domain between 0 and
1, except that S = 0 at a fuel break between 0.45 and 0.50. The reference solution profile of
the initial conditions for temperature is shown in the top panel of Fig. 1. Panels (b) and (c)
show how the temperature profile of the reference solution propagates to time periods 0.05
and further to 0.10.

Fig. 1 Panel (a) shows the
temperature profiles of the
reference solution (solid, dark
line) as well as initial distribution
of ensemble members (dotted,
light lines) for the fire model.
Panels (b) and (c) are similar and
show the effect of forward
propagation on the reference
solution (solid dark line) as well
as the ensemble members (dotted,
light lines) to the first (t = 10) and
second (t = 20) analysis times,
respectively
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Fig. 2 The reference solution of
temperature for the fire model
over 30 time iterations starting
from the first analysis time period
(t = 10)
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Fig. 3 Panel (a) shows the
temperature profiles of 250
ensemble members (dotted lines)
forecast to the first analysis cycle
(10 time iterations from initial
conditions) and the
corresponding reference solution
(solid line). Panel (b) shows the
temperature profiles (dotted
lines) in the analysis ensemble
corresponding to the EnKF
update and includes the
information in the data (
). Panel
(c) compares the regularized
analysis ensemble with the
reference solution where the
second analysis smooths the
temperature via an approximate
spatial derivative constraint
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An initial ensemble of size 250 was generated by perturbing the reference solution tem-
perature and fuel supply values with spatially correlated normal deviates. Six of the ensemble
members were generated by shifting the reference solution right and left spatially, and then
adding perturbations. Each ensemble member is propagated forward ten time steps via the
fire model to reach the time period shown in Fig. 2 to generate the forecast or prior ensemble.
Panel (a) of Fig. 3 shows the 250 members of the forecast ensemble (dotted lines) and the
associated true temperature profile (solid). Synthetic data (
) collected every 10 spatial units
are shown in Panel (b) along with the ensemble (dotted lines) updated to the EnKF analysis
stage. Note that the analysis step does a good job of cinching the temperature profiles to the
few observations; however, the data information does not carry over to nearby locations (e.g.
the analysis ensemble near 0.20 or 0.30 on the x-axis in panel (b).) This cinching phenome-
non is a byproduct of the least-squares approach in the filter and can produces temperature
profiles not compatible with common sense, theory, and numerical approximation schemes.
Assuming a spatial correlation function amongst the observations can eliminate some of the
cinching effect in the updates and produce smoother update ensemble members. However,
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we found that the strength of correlation required to make significant improvements were
impractical and counterintuitive. Furthermore, we are interested in the particular situation
where observations are accurate but spatially sparse.

To force a measure of smoothness upon the analysis, we impose a penalty on the spread
of the first spatial derivative on the temperature analysis field using a second application of
the EnKF code as described in Sect. 4. We choose the observation function L by

Lx = L

[
T
S

]

=
⎡

⎢
⎣

(T1 − T0) /h
...

(TN − TN−1) /h

⎤

⎥
⎦

where Ti ≈ T (xi ) is the discrete temperature variable at node i . So, Lx is the numerical deriv-
ative of the temperature field in the system state. In this example, D is diagonal with non-zero
elements dii = |zi |/(2h2), where z = Lµ. That is, at each node, the variance expected in the
temperature gradient is proportional to the average temperature gradient at that node in the
prior. The values of dii are large enough not to influence reasonable smooth simulations per-
ceptibly but they will suppress simulations that start going unstable and exhibit large swings
on the scale of the mesh step h.

The regularized analysis field is shown in panel (c) of Fig. 3. We now compare the forecasts
from the EnKF analysis (A) and the regularized analysis (R). The ensembles shown in panels
(b) and (c) of Figure 3 were propagated forward 30 time steps and the pointwise squared
errors (MSE) from the reference solution were averaged over each spatial location to simulate
a prediction. The log of the ratio of MSE’s for the two sets of predictions, M SE A/M SER,

is shown in Fig. 4. In every case, the regularized predictions had a smaller MSE value than
those based on the original EnKF analysis ensemble. Because the reference solution is the
basis for this MSE analysis, the effects of bias are included in the calculations via the usual
bias2 + variance formula. A graphical comparison of the bias showed that the bias for
both methods were of roughly the same magnitudes and generally smaller for the regularized
method.

Fig. 4 Log of the ratio of
Mean-squared error (with respect
to reference solution) of the
analysis ensemble (M SE A) and
regularized analysis ensemble
(M SER ). Values greater than
zero support the use of the
two-stage shrinkage method
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6 Conclusion

Including a regularization step with the EnKF can be considered changing the prior distribu-
tion and it was implemented by running EnKF update twice, once on the actual observation
and once on the regularization term as another artificial observation. This additional update
adds information just as the information added by the data likelihood, and it is justified by
a belief about the properties of states that should result from the numerical simulations. In
nonlinear problems, the region of valid simulation states (valid region) may be quite small
and a linear ensemble Kalman filter update will take simulation states out of the valid region,
particularly if the variance of the prior or the data likelihood are large, and a numerical break-
down results. The proposed regularization helps to keep the states within the valid region by
statistically imposing restraints on the gradient. This two-step update is similar to a Bayesian
hierarchical update and can be viewed as a shrinkage step.

We have applied the proposed improvement to EnKF for a simple fire model, which breaks
down numerically because updated states under the usual Kalman filter results in large, non-
physical values at a later time. Since a sign of the problem is the emergence of spikes in the
fire temperature, and since detecting sharp gradients is more sensitive than detecting large
values, we have chosen as the regularization term the numerical derivative of the temperature
field. The covariance of the regularization term was chosen to penalize large swings on the
spatial mesh scale.

In small systems with fast updates, the effect of choosing the covariance of the regulari-
zation term can be considered similar to choosing a smoothing parameter in a nonparametric
regression setting.
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