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Abstract
The objective of this paper is to compare the performance
of the ensemble Kalman filter (EnKF) to the performance
of a gradient-based minimization method for the prob-
lem of estimation of facies boundaries in history match-
ing. EnKF is a Monte Carlo method for data assimilation
that uses an ensemble of reservoir models to represent and
update the covariance of variables. In several published
studies, it outperforms traditional history matching algo-
rithms in adaptability and efficiency.

Because of the approximate nature of the EnKF, the
realizations from one ensemble tend to underestimate the
uncertainty especially for problems that are highly non-
linear. In this paper, the distributions of reservoir model
realizations from 20 independent ensembles are compared
with the distributions from 20 randomized maximum like-
lihood (RML) realizations for a 2D water-flood model with
one injector and four producers. RML is a gradient based
sampling method that generates one reservoir realization
in each minimization of the objective function. It is an ap-
proximate sampling method, but its sampling properties
are similar to Markov chain Monte Carlo method (McMC)
on highly nonlinear problems and relatively more efficient
than the McMC.

Despite the nonlinear relationship between data such
as production rates and facies observations, and the model
variables, the EnKF was effective at history matching the
production data. We find that the computational effort
to generate 20 independent realizations was similar for the
two methods, although the complexity of the code is sub-
stantially less for the EnKF.

Introduction
Several questions regarding the use of the ensemble
Kalman filter for history matching are addressed in this
paper. The most important is a comparison of the effi-
ciency with a gradient-based method for a history match-
ing problem with known facies properties but unknown
boundary locations. Secondly, the ensemble Kalman filter
and a gradient-based method are unlikely to give identi-
cal estimates of model variables, so it is also important to
know if one method generates better realizations. Finally,
since there is often a desire to use the history matched
realizations to quantify uncertainty, it is important to de-
termine if one of the methods is more efficient at generating
independent realizations.

Gradient-based history matching can be performed
several ways (e.g. assimilating data in batch or sequen-
tially); a variety of minimization algorithms can be used
(e.g. conjugate gradient or quasi-Newton), and several
different methods for computing the gradient are avail-
able (e.g. adjoint or sensitivity equations). In this pa-
per, we use what we believe is the most efficient of the
traditional gradient-based methods: an adjoint method
to compute the gradient of the squared data mismatch
1;2;3;4 and the limited memory Broyden-Fletcher-Goldfarb-
Shanno method5 (LBFGS) to compute the direction of the
change6;7;8. The remaining choice is whether to incorpo-
rate all data at once or to incorporate the data sequentially.

Simultaneous, or batch, inversion of all data is clearly
a well-established history matching procedure. Although
data from wells or sensors may arrive nearly continuously,
the practice of updating reservoir models as the data ar-
rive is not common. There are several reasons that make
sequential assimilation of data difficult for large, nonlinear
models: (1) the covariance for all model variables must
be updated as new data are assimilated, but the covari-
ance matrix is very large, (2) the covariance may not be a
good measure of uncertainty for nonlinear problems, and
(3) the sensitivity of a datum to changes in values of model
variables is expensive to compute. Bayesian updating in
general is described by Woodbury9. Modifying a method
described by Tarantola10, Oliver11 evaluated the possibil-
ity of using a sequential assimilation approach for transient
flow in porous media. He found that the results from se-
quential assimilation could be almost as good as from batch
assimilation if the order of the data was carefully selected.
The problem was quite small, however, and an extension
to large models was impractical.
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Although a sequential method has the advantage that
it generates a sequence of history matched models that
may all be useful at the time they are generated, our com-
parisons of efficiency will primarily be based on the effort
required to assimilate all of the data. If the intermediate
predictions are needed (as they would be for control of a
reservoir) the comparison provided here will underestimate
the value of the sequential assimilation.

A secondary objective of history matching is often to
assess the uncertainty in the predictions of future reser-
voir performance or in the estimates of reservoir properties
such as permeability, porosity or saturation. In general,
uncertainty is estimated from an examination of a mod-
erate number of conditional simulations of the prediction
or properties. Unless the realizations are generated fairly
carefully and the sample is sufficiently large, however, the
estimate of uncertainty could be quite poor. Two large
comparative studies of the ability of Monte Carlo meth-
ods to quantify uncertainty in history matching have been
carried out, one in groundwater12 and one in petroleum
13. Neither was conclusive, partly because of the small
sample size. Liu and Oliver14 used a smaller reservoir
model (fewer variables), but much larger sample size. They
found that the method that minimizes an objective func-
tion containing a model mismatch part and a data mis-
match part, with noise added to observations, created re-
alizations that were distributed nearly the same as realiza-
tions from Markov chain Monte Carlo.

The ensemble Kalman filter is a Monte Carlo method
for updating reservoir models. It solves several problems
with the application of the Kalman filter to large nonlinear
problems15;16. It has been applied to reservoir flow prob-
lems with generally good results17;18;19. There has been
no examination, however, of the distribution of the mem-
bers of a single ensemble. The adequacy of the uncertainty
estimate is completely unknown.

In the first paper on the ensemble Kalman filter,
Evensen15 described how the evolution of the probability
density function for the model variables can be approxi-
mated by the motion of “particles” or ensemble members
in phase space. Any desired statistical quantities can be es-
timated from the ensemble of points. When the size of the
ensemble is relatively small, however, the approximation
of the covariance from the ensemble almost certainly con-
tains substantial errors. Houtekamer and Mitchell20 noted
the tendency for reduction in variance due to “inbreeding”.
When the ensemble estimate is used in a Kalman filter, van
Leeuwen21 explained how nonlinearity in the covariance
update relation causes growth in the error as additional
data are assimilated.

In this paper, the comparison is made using history
matching on a truncated plurigaussian model22;23 for geo-
logic facies. It provides a difficult history matching prob-
lem with significant nonlinearities24 that make both the
ensemble Kalman filter and the limited memory BFGS
method difficult to apply.

Methodologies
The problem of estimating the location of facies

boundaries is difficult in history matching, partly because
of the geological complexity. The truncated plurigaussian
method for modeling geologic facies is useful in this aspect
not only for the wide variety of textures and shapes that
can be generated, but also because of the internal consis-
tency of the stochastic model23;25. For both gradient and
EnKF approaches, the truncated plurigaussian method is
used to simulate the facies distributions. In the first step
for simulating a facies field, two random Gaussian fields
Y1 and Y2 are generated based on the geological spatial
features, so that each gridblock is assigned two Gaussian
variables. In the second step, a set of truncation thresh-
olds is applied to the Gaussian variables, and the facies
are assigned to gridblocks depending on the location of Y1

and Y2 within the truncation map. We have elected to use
three intersecting lines as truncation thresholds. Three
non-parallel randomly generated lines that do not all in-
tersect at the same point divide the plane into 7 regions.
A facies type can be attributed to each region, so up to 7
different kinds of facies can be modelled with appropriate
relative percentage.

Randomized Maximum Likelihood. A standard
method for quantify the uncertainty in reservoir simulation
predictions is to generate multiple conditional reservoir
model realizations, and predict future performance of each.
The Randomized Maximum Likelihood (RML) method
generates realizations conditional to nonlinear data from
unconditional realizations in a Gaussian random field by
a process of minimization. It has been shown to have
good sampling properties for history matching problems
with highly nonlinear relationship between the data and
the model parameters14. If the prior covariance of the
model parameters and the variance of the observed data
are known, matched models can be generated as follows:

1. Generate an unconditional realization of the model
parameters, mu ← N [mpr, CM ].

2. Generate a realization of the data, du ← N [dobs, CD].

3. Compute the set of model variables, m, that mini-
mizes the function:

O(m) =
1
2
(m−mu)TC−1

M (m−mu)

+
1
2
(g(m)− du)TC−1

D (g(m)− du)

Solving a minimization problem is required to gener-
ate each matched model. In this study, the limited memory
BFGS method is used in computing the search direction,
and the gradients of the objective function with respect to
the permeability and the porosity fields, ∇kO and ∇φO,
were obtained from the adjoint method for general auto-
matic history matching of reservoir property fields26.
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Ensemble Kalman Filter. The idea of Ensemble
Kalman filter for continuous model updating is propa-
gating an ensemble of initial reservoir models along time
to assimilate data, and the statistical information carried
among the models at each observation time is used to up-
date the model covariance. The ensemble of state vectors
is denoted by Ψ:

Ψ = {y1, y2, . . . , yNe
},

where Ne is the number of ensemble members; yi for
i = 1, Ne are state vectors. Each of the state vectors in
the ensemble Kalman filter contains all the uncertain and
dynamic variables that define the state of the system. At
a certain time step tk for k = 1, Nt, the state vector for
the reservoir model is expressed as:

yk = [(mk)T, d(mk)T]T,

where mk consists of variables for rock properties and flow
system in every gridblock, d(mk) is the simulated data
from the model state mk. The number of simulated data
in the vector d(mk) does not have to be constant since it
depends on the number of observation data at time step
tk.

The methodology of ensemble Kalman filter for data
assimilation only consists of two sequential steps. One is
the forecast forward in time based on solution of the dy-
namical equations for flow and transport in the reservoir:

yp
k,j = f(yu

k−1,j), for j = 1, Ne,

where f(·) is the reservoir simulator. The superscript p
indicates the “predicted” state. This step does not modify
the rock properties, but replaces the pressure, saturation,
and simulated data in the predicted state vector. The ini-
tial ensemble for k = 1 refers to the collection of initial
state vectors, which are sampled from the prior probabil-
ity density function of the state vector before any data
assimilation.

The second step is model updating by correcting the
variables describing the state of the system to honor the ob-
servations. The update to each ensemble member is made
using the Kalman update formula:

yu
j = yp

j + Ke(dj −Hyp
j ), for j = 1, . . . , Ne

where the superscript u denotes “updated”, and Ke is the
ensemble Kalman gain. H is the measurement operator
that extracts the simulated data from the state vector yp:

Hk =
[
0 I

]
.

dj is the observation data at current time plus random er-
ror that has the same distribution with the measurement
error:

dj = dobs + εj , for j = 1, . . . , Ne.

The ensemble Kalman gain is computed as:

Ke = CΨ,eH
T (HCΨ,eH

T + CD)−1,

where the covariance matrix of the state vectors CΨ,e at
any time can be estimated from the ensemble members by
the standard statistical definition:

CΨ,e =
1

Ne − 1

Ne∑
i,j=1

(yp
i − ȳp)(yp

j − ȳp)T,

where the indices i and j are for numbering of the ensemble
members. ȳp is the mean of the Ne ensemble members at
the current data assimilation step. If the size of each state
vector is Ny, the covariance matrix CΨ,e is Ny × Ny. It
is not possible to compute or store CΨ,e for problems that
are not too small. Fortunately, the formulation of the en-
semble Kalman gain allows us to compute HCΨ,e instead
of CΨ,e itself. HCΨ,e is the last Nd rows of CΨ,e.

In this study, the geostatistical models for generating
the two Gaussian fields are assumed to be known, and
the static variables to be modified in history matching are
the random Gaussian fields Y1 and Y2. As the hard data
measurements do not depend on the dynamic states of the
reservoir fluid flow, the state vector for cases with only fa-
cies measurements is yj = {Y1, Y2, dsim}. The facies mea-
surements can be assimilated one at a time to simulate the
process of sequential well placement, in which case dsim is
the facies type of the simulated facies field at the current
observation location. When there are production data in
dsim, the state vector includes the pressure and the satu-
ration in every gridblock, yj = {Y1, Y2, P, S, dsim}. Both
Gaussian fields have the same size as the reservoir grid,
therefore the size of the state vector is Ny = 4×ngrid +nd,
where nd is the number of data obtained at each observa-
tion time.

Matching Hard Data and Production Data
The test case is a reservoir model on a 50 × 50 × 1

grid. The dimensions of each gridblock is 30 ft×30 ft×20
ft. The covariance of the random Gaussian field Y1 is Gaus-
sian type with the principle direction 60◦ east of north.
The range in the principle direction is one third of the
field width, and twice the range in the perpendicular di-
rection. The covariance of the random Gaussian field Y2

is same with that of Y1 except that the anisotropy angle
is 45◦ east of north. Figs. 1(a) and 1(b) show a pair of
unconditional Gaussian fields (Y1, Y2) with the specified
covariances. Three facies are present in the field, which
are denoted as facies 1, facies 2, and facies 3. An uncon-
ditional facies map as shown in Fig. 1(d) is generated by
truncating the two unconditional Gaussian fields Y1 and Y2

using a truncation scheme in Fig. 1(c). The facies in dark
grey is facies 1, in light grey is facies 2, and in white is fa-
cies 3. The covariances of the two Gaussian fields and the
truncation scheme are assumed to be known during history
matching, and used to simulate all the facies realizations.

The true facies field is shown in Fig. 2. There is one
injector near the center and four producers at the corners.
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The facies observations are listed in Table 1 with the well
number and locations. The rock properties are constant
within a facies type, but distinct among the facies. Table 2
presents the permeability and the porosity for each facies
type. The injection rate is fixed at 4600 rb/day for well 1,
and the production rates are fixed at 1300 reservoir barrel
of total fluid per day for wells 2, 3, and 4, respectively.
Well 5 is in a low productivity region, and the production
rate is fixed at 600 rb/day. The initial reservoir pressure
is 3800 psia, which is far above the bubble point of 500
psia. The field is produced for 80 days and the bottom-
hole-pressure at all wells are recorded at day 2, and every
10 days beginning at day 10. There are 45 bottom-hole-
pressure measurement and 5 facies observations from all
wells. The measurement error for pressure data is assumed
to be distributed normally with mean 0 and standard de-
viation of 3 psi. The facies observations are assumed to
be exact. The same reservoir model was used to evalu-
ate both the RML and the EnKF methods. Because of
small differences in the way date are entered for the two
reservoir simulators CLASS and ECLIPSE, the “observed”
data from the two simulators are only compared with the
“true” data from the same simulator.

Gradient approach. The traditional approaches to his-
tory matching assimilate all the data at the same time. Be-
cause the simulation of the process is so expensive, an effi-
cient method of modifying the model parameters to match
the observations is required. In our approach, the adjoint
method is used to compute the gradient of the objective
function with respect to the model variables Y1 and Y2.
The adjoint system is complicated in development, and de-
pendent on the specific reservoir simulator for which it was
developed. Our adjoint system was built for the Chevron
Limited Application Simulation System (CLASS) simula-
tor26;8.

We start the history matching with the initial mod-
els having the correct facies types at well locations. The
matching of facies data is done efficiently using the ensem-
ble Kalman filter method. During the process of history
matching to production data, the step-size of the modifica-
tions to the model parameters is restricted to ensure that
the facies at well locations are maintained to be correct.

Fig. 3 uses box plots to compare the distributions of
the simulated BHP data from the 20 accepted RML re-
alizations to the observed data. The “boxes” includes
the range from P25 to P75, while the lines include the
range from P10 to P90. The distributions of the simulated
bottom-hole pressure from the 20 RML models are much
wider than expected, based on the assumption that the
magnitude of the noise is about 3 psi. As the facies type is
an indicator variable, in order to compute the gradient of
the objective function with respect to the facies, we added
a transition zone at facies boundaries. This transition zone
is only for the purpose of gradient approximation, and does
not exist in the simulation process. Unlike history match-
ing of permeability and porosity, the minimization of the

objective function for history matching of the discontinu-
ous facies often stops at a relatively high objective function
value, because the gradient is only approximately correct.
A typical minimization required approximately 11 itera-
tions. We generated 100 initial models, but only used the
20 models with the lowest final objective function value.

EnKF for history matching. The states variables in
the Kalman filter consist of two Gaussian fields for fa-
cies description, pressure and saturation fields, simulated
bottom-hole pressure data from each well, and simulated
facies at each well location: {Y1, Y2, P, S, Pwf,sim, Fsim}. 40
state vectors are included in an ensemble. The initial en-
semble of state vectors are conditional to the facies ob-
servations using EnKF. Unless care is taken, updating of
the Gaussian fields from matching production data may
change the facies type at well locations. Once the facies
type at a well location is wrong, the Kalman correction
to the Gaussian fields can become large, and may cause
over-shoot of the Gaussian variables. An EnKF iteration
for facies observations is made after each model update to
ensure the updated rock properties at well locations are
always correct.

The first row of Fig. 4 shows 4 out of the 40 initial
facies maps, and the second row shows the corresponding
facies maps simulated from the final ensemble members af-
ter assimilating all the production data. The initial facies
maps all have unique local structures, and the final facies
maps have developed common features among the ensem-
ble members. Some of the common features do not exist
in the true facies map.

Box plots are used to represent the distributions of the
simulated production data from all the 40 ensemble mem-
bers over the 80 days of production. The reservoir simula-
tor ECLIPSE is used in the EnKF approach for adaption
to supercomputers. The simulated bottom-hole pressure
and the observed data are plotted together in Fig. 5. The
box plots in the first column show the bottom-hole pres-
sure from the initial ensemble conditional only to facies
observations. The box plots in the second column show
bottom-hole pressure after assimilation to pressure data.
The observed injection rate is plotted in the thick line.
In the second column of Fig. 5, the distributions of the
bottom-hole pressure from the 40 final reservoir models
are much narrower than the initial distributions and are
centered at the observed data.

A single ensemble of 800 state members was also gen-
erated and assimilated to the observed data. Column 3 of
Fig. 5 shows the distributions of the simulated BHP from
all the 800 matched final models. The matching quality is
clearly at least as good as that using 40 ensemble members,
as the width of the boxes is very narrow.

Discussion
This test problem is somewhat unusual in that the ob-

jective function for the problem, which includes facies data
mismatch, is not differentiable, so it was necessary to intro-
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duce an approximate objective function with a transition
between facies. The quasi-Newton minimization method
should have converged fairly quickly near the minimum,
but did not do so in this case. And the final values of
the objective function were larger than expected. We sim-
ply chose the 20 best realizations from 100 minimizations.
A typical history matching minimization required 11 it-
erations, each iteration requiring CPU time equivalent to
approximately 5 forward simulation runs. The effort re-
quired to generate the 20 independent realizations using
LBFGS was approximately 100 starting models × 11 it-
erations per model × 5 simulations per iterations giving
5500 simulations, or 275 simulations per history matched
model.

The ensemble Kalman filter method with 40 members
in an ensemble required 40 simulation runs to generate 40
history matched models, but it is clear from Fig. 4 that the
variance within an ensemble is too small, so the 40 mod-
els are not independent realizations. Realizations from the
EnKF method, as judged by the median value of the ob-
jective function (6220), are much better than those from
the LBFGS method which gave a larger median value for
the objective function (21,300).

The tendency for the variance within an ensemble to
reduce to a level that is smaller than required by the data
has been previously noted for the EnKF method. Although
the quality of the matching to the observations is satisfac-
tory for all the 40 ensemble members, the significant re-
duction of the variations among the ensemble of matched
facies models lead us to investigate the capability of EnKF
in uncertainty quantification.

In practice, the number of state members in an ensem-
ble is empirically chosen between 40 and 100. When the
number is too small, the variation carried from the initial
ensemble is not sufficient in approximation of the state
covariances for each model updating. Consequently, the
matched models may become highly correlated, and clus-
tered at a small subspace of the real model probability dis-
tribution. In that case, the 40 final models from the same
ensemble are equivalent to one well matched RML real-
ization for uncertainty quantification. On the other hand,
each ensemble member requires one reservoir simulation
run plus some computational overhead for data assimila-
tion. The EnKF approach becomes more computationally
expensive the more ensemble members are included.

We also generated 20 ensembles with 40 state members
in each, such that the total number of states is 800. Each
of the matched models in the 20 small ensembles and the
large ensemble of 800 members was simulated in ECLIPSE
for water cut prediction from each of the four producers
at day 140. The distributions of the predicted water cut
from each ensemble are plotted in box-plots as shown in
Fig. 6. The boxes numbered from 1 to 20 are distributions
from the ensembles with 40 members. The last box in each
plot at number 21 is the distribution from the 800 member
ensemble. The thick lines are predicted water cut from the

true model, where the 80 days production data were gen-
erated. None of the distributions of the 20 small ensembles
covers the predicted water cut for all four producers. Some
of the ensembles predicted very small uncertainties, such
as number 3 and 18. And none of the small ensembles
yields distributions that are large enough to represent the
distributions from all other small ensembles.

The water cut predictions from the large ensemble of
800 state members cover the true water cut from each well.
They also largely cover the distributions from the small en-
sembles. However, except for Well 4, the truth is far from
the center of the distributions of the predictions are heav-
ily biased. Well 5 does not have water breakthrough in
the true model, and only 2 out of the 800 predictions are
correct.

Not all of the history matched realizations are of equiv-
alent quality — with quality in this case measured by
the magnitude of the data mismatches after data assimila-
tion. The higher quality realizations have smaller sums of
squared mismatch between predicted and observed data.
We used the limited memory BFGS method to history
match pressure data for 100 reservoir models, but only
retained the 20 with the lowest value of the objective func-
tion after minimization. The median value of the objective
function from the best 20 was 21,300. The median value
of the final objective function from the ensemble Kalman
filter method with 40 members in an ensemble was 6220.
The median value from EnKF using a single ensemble of
800 was 4780. It is not surprising that better matches to
the data are obtained from the larger ensemble, simply
because there are more degrees of freedom. It is some-
what surprising that the minimization method that used
the adjoint to compute the gradient achieved the poorest
matches to data. This has not been our experience with
other history matching problems, and we attribute it in
this case to the necessity of introducing a transition region
between facies so that the gradient is computed from an
approximation to the actual objective function.

Conclusions
The ensemble Kalman filter method outperformed the

gradient-based minimization method in both computation
efficiency and applicability for the problem of estimation
of facies boundaries in history matching. It took approx-
imately 5500 equivalent simulation runs to obtain the 20
accepted RML model realizations, and only 800 simula-
tion runs for the 20 independent EnKF model realizations.
The quality of the matching from the EnKF model real-
izations are better than those from the gradient approach.
The number of 40 state vectors in an ensemble is insuffi-
cient for uncertainty quantification, as obvious correlations
have been developed among the state vectors during data
assimilation.

Better quality matches were obtained from the larger
ensemble, where 800 simulation runs were made, than
the 20 independent ensembles with 40 state vectors in
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each. We have not yet evaluated the distribution care-
fully enough to know how many could be considered to be
independent realizations. Based on the experience in this
problem, however, it appears that it might be more effi-
cient to use one large ensemble to access uncertainty, than
to use many small ensembles.

Nomenclature

C = covariance matrix
d = vector of data (units depend on data type)

H = measurement operator
m = vector of model parameters
N = number of data or model parameters
O = objective function
P = pressure
S = saturation
Y = Gaussian field
y = state vector
Ψ = ensemble of state vectors
σ = standard deviation

Subscripts

D = data
d = data
e = ensemble
k = iteration index, or permeability

M = model
obs = observed
pr = prior model

sim = simulated
u = unconditional

wf = well flow
φ = porosity

Superscripts

p = predicted
T = transpose
u = updated
−1 = inverse
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Well 1 2 3 4 5
x 25 9 9 41 41
y 25 5 45 45 5

facies 3 1 1 3 2

Table 1: Facies observations from each of the five wells.

index Facies 1 Facies 2 Facies 3
Permeability (md) 174.0 80.0 372.0

Porosity 0.18 0.146 0.25

Table 2: Properties of each the litho-facies in the synthetic problem.

(a) Gaussian field (Y1). (b) Gaussian field (Y2).

(c) Threshold map. (d) Calculated facies field map.

Figure 1: Simulation of lithofacies distribution in the field by truncation of random Gaussian fields Y1 and Y2 using intersecting
line thresholds.
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Figure 2: The true facies field of the synthetic model contains three facies types. The five dots are well locations.

Well 1 Well 2 Well 3

Well 4 Well 5

Figure 3: The box plots present the distributions of the simulated bottom hole pressure from 20 history matched models.
The thick lines are the observed bottom pressure data from each well.
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Figure 4: The first four initial facies map in an ensemble of 40 members (top row), and the corresponding final facies map
after history matched to production data and hard data (bottom row). The dots in each facies map are well
locations.
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Figure 5: Distributions of the simulated bottom hole pressure from the initial ensemble of 40 (first row), and from the history
matched ensemble (second row). The observed data from each well is plotted in a thick line for comparison. The
box plots shown are for Wells 1 through 4.
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Well 2 Well 3

Well 4 Well 5

Figure 6: Distributions of water cut prediction on day 140 from 20 ensemble groups. The straight lines are water cut predicted
from the true model.


